1,068 research outputs found
Recognizing and Drawing IC-planar Graphs
IC-planar graphs are those graphs that admit a drawing where no two crossed
edges share an end-vertex and each edge is crossed at most once. They are a
proper subfamily of the 1-planar graphs. Given an embedded IC-planar graph
with vertices, we present an -time algorithm that computes a
straight-line drawing of in quadratic area, and an -time algorithm
that computes a straight-line drawing of with right-angle crossings in
exponential area. Both these area requirements are worst-case optimal. We also
show that it is NP-complete to test IC-planarity both in the general case and
in the case in which a rotation system is fixed for the input graph.
Furthermore, we describe a polynomial-time algorithm to test whether a set of
matching edges can be added to a triangulated planar graph such that the
resulting graph is IC-planar
SPARTICUS: Small Particles in Cirrus Science and Operations Plan
From a mass-weighted perspective, cirrus clouds exert an enormous influence on the radiative energy budget of the earth?s climate system. Owing to their location in the cold upper troposphere, cirrus can significantly reduce the outgoing longwave radiation while, at the same time, remaining relatively transmissive to solar energy. Thus, cirrus clouds are the only cloud genre that can exert a direct radiative warming influence on the climate system (Ackerman et al. 1988). It is not surprising, therefore, that general circulation models (GCMs) are especially sensitive to the presence of cirrus in the model atmosphere. Lohmann and Roeckner (1995), for instance, show that the climate sensitivity can vary by as much as 40% due to the properties of cirrus varying between transparent and opaque limits. Lohmann and Roeckner (1995) also identify a key feedback by cirrus that is often overlooked; on longer time scales cloud heating in the upper troposphere can act to maintain and modulate the general circulation of the atmosphere through accelerating the subtropical and polar jet streams. Understanding these mechanisms and representing them in models is complicated by the fact that cirrus properties vary over an enormous dynamic range compared to most other clouds
Observing Spontaneous Strong Parity Violation in Heavy-Ion Collisions
We discuss the problem of observing spontaneous parity and CP violation in
collision systems. We discuss and propose observables which may be used in
heavy-ion collisions to observe such violations, as well as event-by-event
methods to analyze the data. Finally, we discuss simple monte-carlo models of
these CP violating effects which we have used to develop our techniques and
from which we derive rough estimates of sensitivities to signals which may be
seen at RHIC
A glassy contribution to the heat capacity of hcp He solids
We model the low-temperature specific heat of solid He in the hexagonal
closed packed structure by invoking two-level tunneling states in addition to
the usual phonon contribution of a Debye crystal for temperatures far below the
Debye temperature, . By introducing a cutoff energy in the
two-level tunneling density of states, we can describe the excess specific heat
observed in solid hcp He, as well as the low-temperature linear term in the
specific heat. Agreement is found with recent measurements of the temperature
behavior of both specific heat and pressure. These results suggest the presence
of a very small fraction, at the parts-per-million (ppm) level, of two-level
tunneling systems in solid He, irrespective of the existence of
supersolidity.Comment: 11 pages, 4 figure
CMB constraints on noncommutative geometry during inflation
We investigate the primordial power spectrum of the density perturbations
based on the assumption that spacetime is noncommutative in the early stage of
inflation. Due to the spacetime noncommutativity, the primordial power spectrum
can lose rotational invariance. Using the k-inflation model and slow-roll
approximation, we show that the deviation from rotational invariance of the
primordial power spectrum depends on the size of noncommutative length scale
L_s but not on sound speed. We constrain the contributions from the spacetime
noncommutativity to the covariance matrix for the harmonic coefficients of the
CMB anisotropies using five-year WMAP CMB maps. We find that the upper bound
for L_s depends on the product of sound speed and slow-roll parameter.
Estimating this product using cosmological parameters from the five-year WMAP
results, the upper bound for L_s is estimated to be less than 10^{-27} cm at
99.7% confidence level.Comment: 8 pages, 1 figure, References added, Accepted for publication in EPJC
(submitted version
Single Electron Elliptic Flow Measurements in Au+Au Collisions from STAR
Recent measurements of elliptic flow (v_2) and the nuclear modification
factor (R_{CP}) of strange mesons and baryons in the intermediate p_T domain in
Au+Au collisions demonstrate a scaling with the number of constituent-quarks.
This suggests hadron production via quark coalescence from a thermalized parton
system. Measuring the elliptic flow of charmed hadrons, which are believed to
originate rather from fragmentation than from coalescence processes, might
therefore change our view of hadron production in heavy ion collisions.
While direct v_2 measurements of charmed hadrons are currently not available,
single electron v_2 at sufficiently high transverse momenta can serve as a
substitute. At transverse momenta above 2 GeV/c, the production of single
electrons from non-photonic sources is expected to be dominated by the decay of
charmed hadrons. Simulations show a strong correlation between the flow of the
charmed hadrons and the flow of their decay electrons for p_T > 2 GeV/c.
We will present preliminary STAR results from our single electron v_2
measurements from Au+Au collisions at RHIC energies.Comment: 10 pages, 7 figures Proceedings of the Hot Quarks 2004 Conference,
July 18-24 2004, Taos Valley, New Mexico, USA to be published in Journal of
Physics
Privacy in crowdsourcing:a systematic review
The advent of crowdsourcing has brought with it multiple privacy challenges. For example, essential monitoring activities, while necessary and unavoidable, also potentially compromise contributor privacy. We conducted an extensive literature review of the research related to the privacy aspects of crowdsourcing. Our investigation revealed interesting gender differences and also differences in terms of individual perceptions. We conclude by suggesting a number of future research directions.</p
Abnormal ECG Findings in Athletes: Clinical Evaluation and Considerations.
PURPOSE OF REVIEW: Pre-participation cardiovascular evaluation with electrocardiography is normal practice for most sporting bodies. Awareness about sudden cardiac death in athletes and recognizing how screening can help identify vulnerable athletes have empowered different sporting disciplines to invest in the wellbeing of their athletes. RECENT FINDINGS: Discerning physiological electrical alterations due to athletic training from those representing cardiac pathology may be challenging. The mode of investigation of affected athletes is dependent on the electrical anomaly and the disease(s) in question. This review will highlight specific pathological ECG patterns that warrant assessment and surveillance, together with an in-depth review of the recommended algorithm for evaluation
Ultra high temperature ceramic composite materials
Ultra-high temperature ceramics (UHTCs) are materials that have been demonstrated to withstand temperatures up to around 3000°C, thermal fluxes of ~17 MWm-2 and gas velocities of around Mach 0.6. Thus, they offer potential for use in applications such as leading edges and engine parts for hypervelocity vehicles. Under the Domain 8 of the MCM-ITP (Materials and Components for Missiles – Innovation and Technology Partnership) programme, research has been carried out investigating UHTC composites consisting of carbon fibre (Cf) preforms impregnated with HfB2 powders. Whilst the initial impregnation route resulted in preforms with high and uniform powder loadings, this was not true for large samples. As a result, the mechanical properties showed a high degree of scatter. Nevertheless, samples with higher final densities showed higher strengths. Thus a new impregnation route has been developed that results in both higher and more homogeneous powder loading. This has led to higher strengths and even greater temperature and ablation resistance with the only penalty being an increase in component mass. A prototype jet vane has been successfully produced
New Constraints (and Motivations) for Abelian Gauge Bosons in the MeV-TeV Mass Range
We survey the phenomenological constraints on abelian gauge bosons having
masses in the MeV to multi-GeV mass range (using precision electroweak
measurements, neutrino-electron and neutrino-nucleon scattering, electron and
muon anomalous magnetic moments, upsilon decay, beam dump experiments, atomic
parity violation, low-energy neutron scattering and primordial
nucleosynthesis). We compute their implications for the three parameters that
in general describe the low-energy properties of such bosons: their mass and
their two possible types of dimensionless couplings (direct couplings to
ordinary fermions and kinetic mixing with Standard Model hypercharge). We argue
that gauge bosons with very small couplings to ordinary fermions in this mass
range are natural in string compactifications and are likely to be generic in
theories for which the gravity scale is systematically smaller than the Planck
mass - such as in extra-dimensional models - because of the necessity to
suppress proton decay. Furthermore, because its couplings are weak, in the
low-energy theory relevant to experiments at and below TeV scales the charge
gauged by the new boson can appear to be broken, both by classical effects and
by anomalies. In particular, if the new gauge charge appears to be anomalous,
anomaly cancellation does not also require the introduction of new light
fermions in the low-energy theory. Furthermore, the charge can appear to be
conserved in the low-energy theory, despite the corresponding gauge boson
having a mass. Our results reduce to those of other authors in the special
cases where there is no kinetic mixing or there is no direct coupling to
ordinary fermions, such as for recently proposed dark-matter scenarios.Comment: 49 pages + appendix, 21 figures. This is the final version which
appears in JHE
- …
