4,310 research outputs found

    Nuclear matrix element for two neutrino double beta decay from 136Xe

    Full text link
    The nuclear matrix element for the two neutrino double beta decay (DBD) of 136Xe was evaluated by FSQP (Fermi Surface Quasi Particle model), where experimental GT strengths measured by the charge exchange reaction and those by the beta decay rates were used. The 2 neutrino DBD matrix element is given by the sum of products of the single beta matrix elements via low-lying (Fermi Surface) quasi-particle states in the intermediate nucleus. 136Xe is the semi-magic nucleus with the closed neutron-shell, and the beta + transitions are almost blocked. Thus the 2 neutrino DBD is much suppressed. The evaluated 2 neutrino DBD matrix element is consistent with the observed value.Comment: 7 pages 6 figure

    The efficacy of aerosol–cloud radiative perturbations from near-surface emissions in deep open-cell stratocumuli

    Get PDF
    Aerosol–cloud radiative effects are determined and quantified in simulations of deep open-cell stratocumuli observed during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) campaign off the west coast of Chile. The cloud deck forms in a boundary layer 1.5&thinsp;km deep, with cell sizes reaching 50&thinsp;km in diameter. Global databases of ship tracks suggest that these linear structures are seldom found in boundary layers this deep. Here, we quantify the changes in cloud radiative properties to a continuous aerosol point source moving along a fixed emission line releasing 1017 particles per second. We show that a spatially coherent cloud perturbation is not evident along the emission line. Yet our model simulates an increase in domain-mean all-sky albedo of 0.05, corresponding to a diurnally averaged cloud radiative effect of 20&thinsp;W m−2, given the annual mean solar insolation at the VOCALS-REx site. Therefore, marked changes in cloud radiative properties in precipitating deep open cells may be driven by anthropogenic near-surface aerosol perturbations, such as those generated by ships. Furthermore, we demonstrate that these changes in cloud radiative properties are masked by the naturally occurring variability within the organised cloud field. A clear detection and attribution of cloud radiative effects to a perturbation in aerosol concentrations becomes possible when sub-filtering of the cloud field is applied, using the spatio-temporal distribution of the aerosol perturbation. Therefore, this work has implications for the detection and attribution of effective cloud radiative forcing in marine stratocumuli, which constitutes one of the major physical uncertainties within the climate system. Our results suggest that ships may sometimes have a substantial radiative effect on marine clouds and albedo, even when ship tracks are not readily visible.</p

    Aerosol Data Sources and Their Roles within PARAGON

    Get PDF
    We briefly but systematically review major sources of aerosol data, emphasizing suites of measurements that seem most likely to contribute to assessments of global aerosol climate forcing. The strengths and limitations of existing satellite, surface, and aircraft remote sensing systems are described, along with those of direct sampling networks and ship-based stations. It is evident that an enormous number of aerosol-related observations have been made, on a wide range of spatial and temporal sampling scales, and that many of the key gaps in this collection of data could be filled by technologies that either exist or are expected to be available in the near future. Emphasis must be given to combining remote sensing and in situ active and passive observations and integrating them with aerosol chemical transport models, in order to create a more complete environmental picture, having sufficient detail to address current climate forcing questions. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) initiative would provide an organizational framework to meet this goal

    Triangle-Free Penny Graphs: Degeneracy, Choosability, and Edge Count

    Full text link
    We show that triangle-free penny graphs have degeneracy at most two, list coloring number (choosability) at most three, diameter D=Ω(n)D=\Omega(\sqrt n), and at most min(2nΩ(n),2nD2)\min\bigl(2n-\Omega(\sqrt n),2n-D-2\bigr) edges.Comment: 10 pages, 2 figures. To appear at the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Beyond Outerplanarity

    Full text link
    We study straight-line drawings of graphs where the vertices are placed in convex position in the plane, i.e., convex drawings. We consider two families of graph classes with nice convex drawings: outer kk-planar graphs, where each edge is crossed by at most kk other edges; and, outer kk-quasi-planar graphs where no kk edges can mutually cross. We show that the outer kk-planar graphs are (4k+1+1)(\lfloor\sqrt{4k+1}\rfloor+1)-degenerate, and consequently that every outer kk-planar graph can be (4k+1+2)(\lfloor\sqrt{4k+1}\rfloor+2)-colored, and this bound is tight. We further show that every outer kk-planar graph has a balanced separator of size O(k)O(k). This implies that every outer kk-planar graph has treewidth O(k)O(k). For fixed kk, these small balanced separators allow us to obtain a simple quasi-polynomial time algorithm to test whether a given graph is outer kk-planar, i.e., none of these recognition problems are NP-complete unless ETH fails. For the outer kk-quasi-planar graphs we prove that, unlike other beyond-planar graph classes, every edge-maximal nn-vertex outer kk-quasi planar graph has the same number of edges, namely 2(k1)n(2k12)2(k-1)n - \binom{2k-1}{2}. We also construct planar 3-trees that are not outer 33-quasi-planar. Finally, we restrict outer kk-planar and outer kk-quasi-planar drawings to \emph{closed} drawings, where the vertex sequence on the boundary is a cycle in the graph. For each kk, we express closed outer kk-planarity and \emph{closed outer kk-quasi-planarity} in extended monadic second-order logic. Thus, closed outer kk-planarity is linear-time testable by Courcelle's Theorem.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Metals and Bacteria Partitioning to Various Size Particles in Ballona Creek Storm Water Runoff

    Get PDF
    Many storm water best management practice (BMP) devices function primarily by capturing particulate matter to take advantage of the well‐documented association between storm water particles and pollutants. The hydrodynamic separation or settling methods used by most BMP devices are most effective at capturing medium to large particles; however, these may not be the most predominant particles associated with urban runoff. The present study examined particle size distribution in storm water runoff from an urban watershed in southern California and investigated the pollutant–particle associations of metals (Cu, Pb, Ni, and Zn) and bacteria (enterococci and Escherichia coli). During small storm events (≤0.7 cm rain), the highest concentration of pollutants were associated with a \u3c6‐µm filter fraction, which accounted for 70% of the per storm contaminant mass but made up more than 20% of the total particle mass. The pollutant–particle association changed with storm size. Most pollutant mass was associated with \u3e35 µm size particles during a 5‐cm rain event. These results suggest that much of the contaminant load in storm water runoff will not be captured by the most commonly used BMP devices, because most of these devices (e.g., hydrodynamic separators) are unable to capture particles smaller than 75 µm

    On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs

    Full text link
    Fan-planar graphs were recently introduced as a generalization of 1-planar graphs. A graph is fan-planar if it can be embedded in the plane, such that each edge that is crossed more than once, is crossed by a bundle of two or more edges incident to a common vertex. A graph is outer-fan-planar if it has a fan-planar embedding in which every vertex is on the outer face. If, in addition, the insertion of an edge destroys its outer-fan-planarity, then it is maximal outer-fan-planar. In this paper, we present a polynomial-time algorithm to test whether a given graph is maximal outer-fan-planar. The algorithm can also be employed to produce an outer-fan-planar embedding, if one exists. On the negative side, we show that testing fan-planarity of a graph is NP-hard, for the case where the rotation system (i.e., the cyclic order of the edges around each vertex) is given

    Observing Spontaneous Strong Parity Violation in Heavy-Ion Collisions

    Get PDF
    We discuss the problem of observing spontaneous parity and CP violation in collision systems. We discuss and propose observables which may be used in heavy-ion collisions to observe such violations, as well as event-by-event methods to analyze the data. Finally, we discuss simple monte-carlo models of these CP violating effects which we have used to develop our techniques and from which we derive rough estimates of sensitivities to signals which may be seen at RHIC
    corecore