12 research outputs found
Hiding solutions in random satisfiability problems: A statistical mechanics approach
A major problem in evaluating stochastic local search algorithms for
NP-complete problems is the need for a systematic generation of hard test
instances having previously known properties of the optimal solutions. On the
basis of statistical mechanics results, we propose random generators of hard
and satisfiable instances for the 3-satisfiability problem (3SAT). The design
of the hardest problem instances is based on the existence of a first order
ferromagnetic phase transition and the glassy nature of excited states. The
analytical predictions are corroborated by numerical results obtained from
complete as well as stochastic local algorithms.Comment: 5 pages, 4 figures, revised version to app. in PR
Survey-propagation decimation through distributed local computations
We discuss the implementation of two distributed solvers of the random K-SAT
problem, based on some development of the recently introduced
survey-propagation (SP) algorithm. The first solver, called the "SP diffusion
algorithm", diffuses as dynamical information the maximum bias over the system,
so that variable nodes can decide to freeze in a self-organized way, each
variable making its decision on the basis of purely local information. The
second solver, called the "SP reinforcement algorithm", makes use of
time-dependent external forcing messages on each variable, which let the
variables get completely polarized in the direction of a solution at the end of
a single convergence. Both methods allow us to find a solution of the random
3-SAT problem in a range of parameters comparable with the best previously
described serialized solvers. The simulated time of convergence towards a
solution (if these solvers were implemented on a distributed device) grows as
log(N).Comment: 18 pages, 10 figure
Clusters of solutions and replica symmetry breaking in random k-satisfiability
We study the set of solutions of random k-satisfiability formulae through the
cavity method. It is known that, for an interval of the clause-to-variables
ratio, this decomposes into an exponential number of pure states (clusters). We
refine substantially this picture by: (i) determining the precise location of
the clustering transition; (ii) uncovering a second `condensation' phase
transition in the structure of the solution set for k larger or equal than 4.
These results both follow from computing the large deviation rate of the
internal entropy of pure states. From a technical point of view our main
contributions are a simplified version of the cavity formalism for special
values of the Parisi replica symmetry breaking parameter m (in particular for
m=1 via a correspondence with the tree reconstruction problem) and new large-k
expansions.Comment: 30 pages, 14 figures, typos corrected, discussion of appendix C
expanded with a new figur
On the cavity method for decimated random constraint satisfaction problems and the analysis of belief propagation guided decimation algorithms
We introduce a version of the cavity method for diluted mean-field spin
models that allows the computation of thermodynamic quantities similar to the
Franz-Parisi quenched potential in sparse random graph models. This method is
developed in the particular case of partially decimated random constraint
satisfaction problems. This allows to develop a theoretical understanding of a
class of algorithms for solving constraint satisfaction problems, in which
elementary degrees of freedom are sequentially assigned according to the
results of a message passing procedure (belief-propagation). We confront this
theoretical analysis to the results of extensive numerical simulations.Comment: 32 pages, 24 figure
Solving satisfiability problems by fluctuations: The dynamics of stochastic local search algorithms
Stochastic local search algorithms are frequently used to numerically solve
hard combinatorial optimization or decision problems. We give numerical and
approximate analytical descriptions of the dynamics of such algorithms applied
to random satisfiability problems. We find two different dynamical regimes,
depending on the number of constraints per variable: For low constraintness,
the problems are solved efficiently, i.e. in linear time. For higher
constraintness, the solution times become exponential. We observe that the
dynamical behavior is characterized by a fast equilibration and fluctuations
around this equilibrium. If the algorithm runs long enough, an exponentially
rare fluctuation towards a solution appears.Comment: 21 pages, 18 figures, revised version, to app. in PRE (2003
Bicoloring Random Hypergraphs
We study the problem of bicoloring random hypergraphs, both numerically and
analytically. We apply the zero-temperature cavity method to find analytical
results for the phase transitions (dynamic and static) in the 1RSB
approximation. These points appear to be in agreement with the results of the
numerical algorithm. In the second part, we implement and test the Survey
Propagation algorithm for specific bicoloring instances in the so called
HARD-SAT phase.Comment: 14 pages, 10 figure
Phase transitions in the -coloring of random hypergraphs
31 pages, 7 figuresWe study in this paper the structure of solutions in the random hypergraph coloring problem and the phase transitions they undergo when the density of constraints is varied. Hypergraph coloring is a constraint satisfaction problem where each constraint includes variables that must be assigned one out of q colors in such a way that there are no monochromatic constraints, i.e. there are at least two distinct colors in the set of variables belonging to every constraint. This problem generalizes naturally coloring of random graphs ( = 2) and bicoloring of random hypergraphs ( = 2), both of which were extensively studied in past works. The study of random hypergraph coloring gives us access to a case where both the size q of the domain of the variables and the arity of the constraints can be varied at will. Our work provides explicit values and predictions for a number of phase transitions that were discovered in other constraint satisfaction problems but never evaluated before in hypergraph coloring. Among other cases we revisit the hypergraph bicoloring problem ( = 2) where we find that for = 3 and = 4 the colorability threshold is not given by the one-step-replica-symmetry-breaking analysis as the latter is unstable towards more levels of replica symmetry breaking. We also unveil and discuss the coexistence of two different 1RSB solutions in the case of = 2, ≥ 4. Finally we present asymptotic expansions for the density of constraints at which various phase transitions occur, in the limit where and/or diverge