12 research outputs found

    Hiding solutions in random satisfiability problems: A statistical mechanics approach

    Full text link
    A major problem in evaluating stochastic local search algorithms for NP-complete problems is the need for a systematic generation of hard test instances having previously known properties of the optimal solutions. On the basis of statistical mechanics results, we propose random generators of hard and satisfiable instances for the 3-satisfiability problem (3SAT). The design of the hardest problem instances is based on the existence of a first order ferromagnetic phase transition and the glassy nature of excited states. The analytical predictions are corroborated by numerical results obtained from complete as well as stochastic local algorithms.Comment: 5 pages, 4 figures, revised version to app. in PR

    Survey-propagation decimation through distributed local computations

    Full text link
    We discuss the implementation of two distributed solvers of the random K-SAT problem, based on some development of the recently introduced survey-propagation (SP) algorithm. The first solver, called the "SP diffusion algorithm", diffuses as dynamical information the maximum bias over the system, so that variable nodes can decide to freeze in a self-organized way, each variable making its decision on the basis of purely local information. The second solver, called the "SP reinforcement algorithm", makes use of time-dependent external forcing messages on each variable, which let the variables get completely polarized in the direction of a solution at the end of a single convergence. Both methods allow us to find a solution of the random 3-SAT problem in a range of parameters comparable with the best previously described serialized solvers. The simulated time of convergence towards a solution (if these solvers were implemented on a distributed device) grows as log(N).Comment: 18 pages, 10 figure

    Clusters of solutions and replica symmetry breaking in random k-satisfiability

    Full text link
    We study the set of solutions of random k-satisfiability formulae through the cavity method. It is known that, for an interval of the clause-to-variables ratio, this decomposes into an exponential number of pure states (clusters). We refine substantially this picture by: (i) determining the precise location of the clustering transition; (ii) uncovering a second `condensation' phase transition in the structure of the solution set for k larger or equal than 4. These results both follow from computing the large deviation rate of the internal entropy of pure states. From a technical point of view our main contributions are a simplified version of the cavity formalism for special values of the Parisi replica symmetry breaking parameter m (in particular for m=1 via a correspondence with the tree reconstruction problem) and new large-k expansions.Comment: 30 pages, 14 figures, typos corrected, discussion of appendix C expanded with a new figur

    On the cavity method for decimated random constraint satisfaction problems and the analysis of belief propagation guided decimation algorithms

    Full text link
    We introduce a version of the cavity method for diluted mean-field spin models that allows the computation of thermodynamic quantities similar to the Franz-Parisi quenched potential in sparse random graph models. This method is developed in the particular case of partially decimated random constraint satisfaction problems. This allows to develop a theoretical understanding of a class of algorithms for solving constraint satisfaction problems, in which elementary degrees of freedom are sequentially assigned according to the results of a message passing procedure (belief-propagation). We confront this theoretical analysis to the results of extensive numerical simulations.Comment: 32 pages, 24 figure

    Solving satisfiability problems by fluctuations: The dynamics of stochastic local search algorithms

    Full text link
    Stochastic local search algorithms are frequently used to numerically solve hard combinatorial optimization or decision problems. We give numerical and approximate analytical descriptions of the dynamics of such algorithms applied to random satisfiability problems. We find two different dynamical regimes, depending on the number of constraints per variable: For low constraintness, the problems are solved efficiently, i.e. in linear time. For higher constraintness, the solution times become exponential. We observe that the dynamical behavior is characterized by a fast equilibration and fluctuations around this equilibrium. If the algorithm runs long enough, an exponentially rare fluctuation towards a solution appears.Comment: 21 pages, 18 figures, revised version, to app. in PRE (2003

    Bicoloring Random Hypergraphs

    Full text link
    We study the problem of bicoloring random hypergraphs, both numerically and analytically. We apply the zero-temperature cavity method to find analytical results for the phase transitions (dynamic and static) in the 1RSB approximation. These points appear to be in agreement with the results of the numerical algorithm. In the second part, we implement and test the Survey Propagation algorithm for specific bicoloring instances in the so called HARD-SAT phase.Comment: 14 pages, 10 figure

    Phase transitions in the qq-coloring of random hypergraphs

    No full text
    31 pages, 7 figuresWe study in this paper the structure of solutions in the random hypergraph coloring problem and the phase transitions they undergo when the density of constraints is varied. Hypergraph coloring is a constraint satisfaction problem where each constraint includes KK variables that must be assigned one out of q colors in such a way that there are no monochromatic constraints, i.e. there are at least two distinct colors in the set of variables belonging to every constraint. This problem generalizes naturally coloring of random graphs (KK = 2) and bicoloring of random hypergraphs (qq = 2), both of which were extensively studied in past works. The study of random hypergraph coloring gives us access to a case where both the size q of the domain of the variables and the arity KK of the constraints can be varied at will. Our work provides explicit values and predictions for a number of phase transitions that were discovered in other constraint satisfaction problems but never evaluated before in hypergraph coloring. Among other cases we revisit the hypergraph bicoloring problem (qq = 2) where we find that for KK= 3 and KK = 4 the colorability threshold is not given by the one-step-replica-symmetry-breaking analysis as the latter is unstable towards more levels of replica symmetry breaking. We also unveil and discuss the coexistence of two different 1RSB solutions in the case of qq = 2, KK ≥ 4. Finally we present asymptotic expansions for the density of constraints at which various phase transitions occur, in the limit where qq and/or KK diverge
    corecore