5 research outputs found

    Mutations in HID1 Cause Syndromic Infantile Encephalopathy and Hypopituitarism.

    Get PDF
    OBJECTIVE: Precursors of peptide hormones undergo posttranslational modifications within the trans-Golgi network (TGN). Dysfunction of proteins involved at different steps of this process cause several complex syndromes affecting the central nervous system (CNS). We aimed to clarify the genetic cause in a group of patients characterized by hypopituitarism in combination with brain atrophy, thin corpus callosum, severe developmental delay, visual impairment, and epilepsy. METHODS: Whole exome sequencing was performed in seven individuals of six unrelated families with these features. Postmortem histopathological and HID1 expression analysis of brain tissue and pituitary gland were conducted in one patient. Functional consequences of the homozygous HID1 variant p.R433W were investigated by Seahorse XF Assay in fibroblasts of two patients. RESULTS: Bi-allelic variants in the gene HID1 domain-containing protein 1 (HID1) were identified in all patients. Postmortem examination confirmed cerebral atrophy with enlarged lateral ventricles. Markedly reduced expression of pituitary hormones was found in pituitary gland tissue. Colocalization of HID1 protein with the TGN was not altered in fibroblasts of patients compared to controls, while the extracellular acidification rate upon stimulation with potassium chloride was significantly reduced in patient fibroblasts compared to controls. INTERPRETATION: Our findings indicate that mutations in HID1 cause an early infantile encephalopathy with hypopituitarism as the leading presentation, and expand the list of syndromic CNS diseases caused by interference of TGN function. ANN NEUROL 2021

    PPA1 Deficiency Causes a Deranged Galactose Metabolism Recognizable in Neonatal Screening

    No full text
    Two siblings showed increased galactose and galactose-related metabolites in neonatal screening. Diagnostic workup did not reveal abnormalities in any of the known disease-causing enzymes involved in galactose metabolism. Using whole-exome sequencing, we identified a homozygous missense variant in PPA1 encoding the cytosolic pyrophosphatase 1 (PPA1), c.557C>T (p.Thr186Ile). The enzyme activity of PPA1 was determined using a colorimetric assay, and the protein content was visualized via western blotting in skin fibroblasts from one of the affected individuals. The galactolytic activity of the affected fibroblasts was determined by measuring extracellular acidification with a Seahorse XFe96 analyzer. PPA1 activity decreased to 22% of that of controls in the cytosolic fraction of homogenates from patient fibroblasts. PPA1 protein content decreased by 50% according to western blot analysis, indicating a reduced stability of the variant protein. The extracellular acidification rate was reduced in patient fibroblasts when galactose was used as a substrate. Untargeted metabolomics of blood samples revealed an elevation of other metabolites related to pyrophosphate metabolism. Besides hyperbilirubinemia in the neonatal period in one child, both children were clinically unremarkable at the ages of 3 and 14 years, respectively. We hypothesize that the observed metabolic derangement is a possible mild manifestation of PPA1 deficiency. Unresolved abnormalities in galactosemia screening might result in the identification of more individuals with PPA1 deficiency, a newly discovered inborn metabolic disorder (IMD)

    Variants in Mitochondrial ATP Synthase Cause Variable Neurologic Phenotypes

    Get PDF
    Objective: ATP synthase (ATPase) is responsible for the majority of ATP production. Nevertheless, disease phenotypes associated with mutations in ATPase subunits are extremely rare. We aimed at expanding the spectrum of ATPase-related diseases. Methods: Whole-exome sequencing in cohorts with 2,962 patients diagnosed with mitochondrial disease and/or dystonia and international collaboration were used to identify deleterious variants in ATPase-encoding genes. Findings were complemented by transcriptional and proteomic profiling of patient fibroblasts. ATPase integrity and activity were assayed using cells and tissues from 5 patients. Results: We present 10 total individuals with biallelic or de novo monoallelic variants in nuclear ATPase subunit genes. Three unrelated patients showed the same homozygous missense ATP5F1E mutation (including one published case). An intronic splice-disrupting alteration in compound heterozygosity with a nonsense variant in ATP5PO was found in one patient. Three patients had de novo heterozygous missense variants in ATP5F1A, whereas another 3 were heterozygous for ATP5MC3 de novo missense changes. Bioinformatics methods and populational data supported the variants’ pathogenicity. Immunohistochemistry, proteomics, and/or immunoblotting revealed significantly reduced ATPase amounts in association to ATP5F1E and ATP5PO mutations. Diminished activity and/or defective assembly of ATPase was demonstrated by enzymatic assays and/or immunoblotting in patient samples bearing ATP5F1A-p.Arg207His, ATP5MC3-p.Gly79Val, and ATP5MC3-p.Asn106Lys. The associated clinical profiles were heterogeneous, ranging from hypotonia with spontaneous resolution (1/10) to epilepsy with early death (1/10) or variable persistent abnormalities, including movement disorders, developmental delay, intellectual disability, hyperlactatemia, and other neurologic and systemic features. Although potentially reflecting an ascertainment bias, dystonia was common (7/10). Interpretation: Our results establish evidence for a previously unrecognized role of ATPase nuclear-gene defects in phenotypes characterized by neurodevelopmental and neurodegenerative features.Open access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Pathogenic variants in GCSH encoding the moonlighting H-protein cause combined Nonketotic Hyperglycinemia and Lipoate Deficiency

    No full text
    Maintaining protein lipoylation is vital for cell metabolism. The H-protein encoded by GCSH has a dual role in protein lipoylation required for bioenergetic enzymes including pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase, and in the one-carbon metabolism through its involvement in glycine cleavage enzyme system, intersecting two vital roles for cell survival. Here we report six patients with biallelic pathogenic variants in GCSH and a broad clinical spectrum ranging from neonatal fatal glycine encephalopathy to an attenuated phenotype of developmental delay, behavioral problems, limited epilepsy, and variable movement problems. The mutational spectrum includes one insertion c.293-2_293-1insT, one deletion c.122_(228 + 1_229-1) del, one duplication of exons 4 and 5, one nonsense variant p.Gln76*and four missense p.His57Arg, p.Pro115Leu, and p.Thr148Pro and the previously described p.Met1?. Via functional studies in patient's fibroblasts, molecular modelling, expression analysis in GCSH knock-down COS7 cells and yeast, and in vitro protein studies, we demonstrate for the first time that most variants identified in our cohort produced a hypomorphic effect on both mitochondrial activities, protein lipoylation and glycine metabolism, causing combined deficiency whereas some missense variants affect primarily one function only. The clinical features of the patients reflect the impact of the GCSH changes on any of the two functions analyzed. Our analysis illustrates the complex interplay of functional and clinical impact when pathogenic variants affect a multifunctional protein involved in two metabolic pathways and emphasizes the value of the functional assays to select the treatment and investigate new personalized options
    corecore