24 research outputs found

    Development of a tissue-engineered skin substitute on a base of human amniotic membrane

    Get PDF
    Allogenic graft material and tissue engineering have recently shown promising results for the improvement of both esthetic and functional outcomes in the treatment of large skin defects. We chose human amniotic membrane as a cellular scaffold in order to develop a skin substitute for later in vivo uses. Various methods of de-epithelialization of the human amniotic membrane were evaluated by histological analysis including hematoxylin–eosin and laminin staining, optic coherence tomography, and scanning electron microscopy with 0.25/0.02% trypsin/ethylenediaminetetraacetic acid treatment and mechanical cell removal showing an almost complete loss of the epithelium and a mainly intact basement membrane. Novel examination of human amniotic membrane by optic coherence tomography was feasible, but difficulties were experienced in handling and interpretation of the tissue as no comparable data exist. Subsequently, we developed an air–liquid interface cell culture to cultivate keratinocytes and fibroblasts on the de-epithelialized human amniotic membrane. We achieved a mostly keratinized surface on the epidermal side with a confluent fibroblast network on the chorion side

    Development of a tissue-engineered skin substitute on a base of human amniotic membrane

    Get PDF
    Allogenic graft material and tissue engineering have recently shown promising results for the improvement of both esthetic and functional outcomes in the treatment of large skin defects. We chose human amniotic membrane as a cellular scaffold in order to develop a skin substitute for later in vivo uses. Various methods of de-epithelialization of the human amniotic membrane were evaluated by histological analysis including hematoxylin-eosin and laminin staining, optic coherence tomography, and scanning electron microscopy with 0.25/0.02% trypsin/ethylenediaminetetraacetic acid treatment and mechanical cell removal showing an almost complete loss of the epithelium and a mainly intact basement membrane. Novel examination of human amniotic membrane by optic coherence tomography was feasible, but difficulties were experienced in handling and interpretation of the tissue as no comparable data exist. Subsequently, we developed an air-liquid interface cell culture to cultivate keratinocytes and fibroblasts on the de-epithelialized human amniotic membrane. We achieved a mostly keratinized surface on the epidermal side with a confluent fibroblast network on the chorion side

    Cryopreservation of Endothelial Cells in Various Cryoprotective Agents and Media - Vitrification versus Slow Freezing Methods.

    No full text
    Vitrification of endothelial cells (MHECT-5) has not previously been compared with controlled slow freezing methods under standardized conditions. To identify the best cryopreservation technique, we evaluated vitrification and standardized controlled-rate -1°C/minute cell freezing in a -80°C freezer and tested four cryoprotective agents (CPA), namely dimethyl sulfoxide (DMSO), ethylene glycol (EG), propylene glycol (PG), and glycerol (GLY), and two media, namely Dulbecco's modified Eagle medium Ham's F-12 (DMEM)and K+-modified TiProtec (K+TiP), which is a high-potassium-containing medium. Numbers of viable cells in proliferation were evaluated by the CellTiter 96® AQueous One Solution Cell Proliferation Assay (Promega Corporation, Mannheim, Germany). To detect the exact frozen cell number per cryo vial, DNA content was measured by using Hoechst 33258 dye prior to analysis. Thus, results could be evaluated unconstrained by absolute cell number. Thawed cells were cultured in 25 cm2 cell culture flasks to confluence and examined daily by phase contrast imaging. With regard to cell recovery immediately after thawing, DMSO was the most suitable CPA combined with K+TiP in vitrification (99 ±0.5%) and with DMEM in slow freezing (92 ±1.6%). The most viable cells in proliferation after three days of culture were obtained in cells vitrificated by using GLY with K+TiP (308 ±34%) and PG with DMEM in slow freezing (280 ±27%)

    Impact of expansion and redifferentiation under hypothermia on chondrogenic capacity of cultured human septal chondrocytes

    No full text
    A critical limitation in the cultivation of cartilage for tissue engineering is the dedifferentiation in chondrocytes, mainly during in vitro amplification. Despite many previous studies investigating the influence of various conditions, no data exist concerning the effects of hypothermia. Our aim has been to influence chondrocyte dedifferentiation in vitro by hypothermic conditions. Chondrocytes were isolated from cartilage biopsies and seeded in monolayer and in three-dimensional pellet-cultures. Each cell culture was either performed at 32.2°C or 37°C during amplification. Additionally, the influence of the redifferentiation of chondrocytes in three-dimensional cell culture was examined at 32.2°C and 37°C after amplification at 32.2°C or 37°C. An 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay was used to measure cell proliferation in monolayer, whereas the polymerase chain reaction and immunohistochemical and histological staining were used in three-dimensional pellet-cultures. Real-time polymerase chain reaction was employed to measure the relative expression of the target genes collagen II, collagen I, aggrecan and versican. Ratios were estimated between collagen II/collagen I and aggrecan/versican to evaluate differentiation. A higher value of these ratios indicated an advantageous status of differentiation. In monolayer, hypothermia at 32.2°C slowed down the proliferation rate of chondrocytes significantly, being up to two times lower at 32.2°C compared with culture at 37°C. Simultaneously, hypothermia in monolayer decelerated dedifferentiation. The ratio of aggrecan/versican was significantly higher at 32.2°C compared with that at 37°C. In three-dimensional pellet-culture, the chondrocytes redifferentiated at 32.2°C and at 37°C, and this process is more distinct at 37°C than at 32.2°C. Similar results were obtained for the ratios of collagen II/collagen I and aggrecan/versican and were supported by immunochemical and histological staining. Thus, hypothermic conditions for chondrocytes are mainly advantageous in monolayer culture. In three-dimensional pellet-culture, redifferentiation predominates at 37°C compared with at 32.2°C. In particular, the results from the monolayer cultures show potential in the avoidance of dedifferentiation

    Prefabrication of 3D cartilage contructs: towards a tissue engineered auricle--a model tested in rabbits.

    Get PDF
    The reconstruction of an auricle for congenital deformity or following trauma remains one of the greatest challenges in reconstructive surgery. Tissue-engineered (TE) three-dimensional (3D) cartilage constructs have proven to be a promising option, but problems remain with regard to cell vitality in large cell constructs. The supply of nutrients and oxygen is limited because cultured cartilage is not vascular integrated due to missing perichondrium. The consequence is necrosis and thus a loss of form stability. The micro-surgical implantation of an arteriovenous loop represents a reliable technology for neovascularization, and thus vascular integration, of three-dimensional (3D) cultivated cell constructs. Auricular cartilage biopsies were obtained from 15 rabbits and seeded in 3D scaffolds made from polycaprolactone-based polyurethane in the shape and size of a human auricle. These cartilage cell constructs were implanted subcutaneously into a skin flap (15 × 8 cm) and neovascularized by means of vascular loops implanted micro-surgically. They were then totally enhanced as 3D tissue and freely re-implanted in-situ through microsurgery. Neovascularization in the prefabricated flap and cultured cartilage construct was analyzed by microangiography. After explantation, the specimens were examined by histological and immunohistochemical methods. Cultivated 3D cartilage cell constructs with implanted vascular pedicle promoted the formation of engineered cartilaginous tissue within the scaffold in vivo. The auricles contained cartilage-specific extracellular matrix (ECM) components, such as GAGs and collagen even in the center oft the constructs. In contrast, in cultivated 3D cartilage cell constructs without vascular pedicle, ECM distribution was only detectable on the surface compared to constructs with vascular pedicle. We demonstrated, that the 3D flaps could be freely transplanted. On a microangiographic level it was evident that all the skin flaps and the implanted cultivated constructs were well neovascularized. The presented method is suggested as a promising alternative towards clinical application of engineered cartilaginous tissue for plastic and reconstructive surgery

    Cell doubling-time after the use of slow freezing methods.

    No full text
    <p>Figure 3 illustrates MHEC-5T doubling-time after the use of slow freezing methods. DMEM = DMEM Ham’s F-12 Gln+, 20% FBS, and 1.5M of one of the CPAs; K<sup>+</sup>TiP = K<sup>+</sup>TiP. 0.5M sucrose, 20% FBS, and 1.5M of one of the CPAs; **** = highest siginificance (p < 0.0001).</p

    Culture of thawed cells after slow freezing and vitrification.

    No full text
    <p>Cells in culture after thawing were counted in phase contrast photographs with adobe illustrator CS5 (Adobe Systems, Delaware, USA). DMEM = DMEM Ham’s F-12 Gln+, 20% FBS, and 1.5M (slow freezing) / 3M (vitrification) of one of the CPAs; K<sup>+</sup>TiP = K<sup>+</sup>TiP, 0.5M sucrose, 20% FBS, and 1.5M (slow freezing) / 3M (vitrification) of one of the CPAs. DMSO = dimethyl sulfoxide; EG = ethylene glycol; PG = propylene glycol; GLY = glycerin.</p

    Cell recovery by using slow freezing methods.

    No full text
    <p>Figure 1 illustrates cell recovery of slowly frozen MHEC-5Ts immediately after thawing. DMEM = DMEM Ham’s F-12 Gln+, 20% FBS, and 1.5M of one of the CPAs; K<sup>+</sup>TiP = K<sup>+</sup>TiP. 0.5M sucrose, 20% FBS, and 1.5M of one of the CPAs; ** = medium significant (p < 0.01); **** = highest siginificance (p < 0.0001).</p
    corecore