46 research outputs found

    Mechanismen der Stickstoffmonoxid-vermittelten Nozizeption

    Get PDF
    Die NO/cGMP-Kaskade spielt bei der nozizeptiven Transmission im Hinterhorn des Rückenmarks eine wichtige Rolle. In der vorliegenden Arbeit wurden bekannte cGMP-Targets (PKG-1, CNG-Kanäle, PDE-2 und -3) sowie synaptische Vesikelproteine (Synapsin 2, Rabphilin) als potentielle Targets der NO/cGMP-Kaskade mit Hilfe von molekularbiologischen Methoden und nozizeptiven Verhaltensstudien hinsichtlich einer Beteiligung an der nozizeptiven Transmission im Rückenmark untersucht. Im Formalintest reduzierte der PKG-1-Inhibitor Rp-8-Br-cGMPS (0,1 - 0,5 µmol i.t.) die nozizeptive Antwort, während der PKG-1-Aktivator 8-Br-cGMP in hoher Dosis (2,5 µmol i.t.) einen gegenteiligen Effekt zeigte. Überraschenderweise wirkte 8-Br-cGMP in niedriger Dosis (0,1 - 0,25 µmol i.t.) antinozizeptiv, was durch die gleichzeitige Applikation des PKG-Inhibitors weiter verstärkt wurde. Im Gegensatz zu Rp-8-Br-cGMPS oder 8-Br-cGMP beeinflussten weder der CNG-Kanal-Inhibitor L-cis-Diltiazem (0,5 mg i.t.), noch die PDE-Inhibitoren EHNA (0,25 µmol i.t.) oder Milrinon (5 - 10 mg/kg i.p.) die nozizeptive Antwort im Formalintest. Mit Western Blot-Analysen konnte gezeigt werden, dass die Formalininjektion in eine Hinterpfote im Lumbalmark nach 48 - 96 h eine Steigerung der PKG-1-Proteinkonzentration zur Folge hat. Dies wurde durch Vorbehandlung der Versuchstiere mit Rp-8-Br-cGMPS (0,1 - 0,5 µmol i.t.) oder Morphin (2,5 - 5 mg/kg i.p.) verhindert, während 8-Br-cGMP (2,5 µmol i.t.) die Formalin-induzierte Steigerung der PKG-1-Konzentration im Lumbalmark verstärkte. Die Formalininjektion in eine Hinterpfote veränderte auch die Synapsin 2b-Konzentration im Lumbalmark: 10 min bis 8 h nach der Injektion wurde die Synapsin 2b-Proteinkonzentration gesenkt, nach 48 h war jedoch eine Zunahme zu beobachten. Diese späte Zunahme der Synapsin 2b-Proteinkonzentration wurde durch eine Steigerung der Genexpression hervorgerufen, denn mit quantitativer Realtime RT-PCR wurden erhöhte mRNA-Konzentrationen 24 - 48 h nach der Formalininjektion gemessen. Die rasche Formalin-induzierte Abnahme der Synapsin 2b-Proteinkonzentration ging jedoch weder mit Änderungen der mRNA-Konzentration, noch mit veränderten Solubilisierungseigenschaften bei der Proteinaufbereitung einher, und wurde durch Vorbehandlung der Versuchstiere mit Morphin (10 mg/kg i.p.), Diclofenac (10 mg/kg i.p.), Metamizol (1 g/kg i.p.) oder dem NOS-Inhibitor L-NAME (10 - 100 mg/kg i.p.) verhindert. Demgegenüber führte die Vorbehandlung mit dem NO-Donor NOC-5 (4 - 20 µg i.t.), 8-Br-cGMP (0,1 - 2,5 µmol i.t.), Rp-8-Br-cGMPS (0,1 - 0,25 µmol i.t.) oder der Kombination von 8-Br-cGMP und Rp-8-Br-cGMPS (0,1 + 0,1 und 0,5 + 0,5 µmol i.t.) zu einer Verstärkung der Formalin-induzierten raschen Senkung der Synapsin 2b-Konzentration. Die funktionelle Relevanz dieser Befunde wurde in mehreren nozizeptiven Tiermodellen überprüft. Durch eine kontinuierliche i.t. Infusion von Antisense-Oligonukleotiden wurde die Synapsin 2-Konzentration im Lumbalmark der Ratte gesenkt, was eine Reduktion der nozizeptiven Antwort im Formalintest zur Folge hatte. Bei Synapsin 2-Knockout-Mäusen war im Vergleich zu Wildtyp-Mäusen eine verminderte nozizeptive Antwort im Formalintest und eine Reduktion der mechanischen Hyperalgesie bei Zymosan-induzierter Pfotenentzündung zu beobachten. Im Hot-Plate-Test zeigten die Knockout-Mäuse im Vergleich zu Wildtyp-Mäusen kürzere Latenzzeiten. Im Gegensatz zu Synapsin 2b wurde die Rabphilin-Konzentration im Lumbalmark durch Formalininjektion in eine Hinterpfote nicht beeinflusst. Allerdings führte die Verabreichung von Metamizol (500 mg/kg i.p.) oder Diclofenac (5 mg/kg i.p.) nach 1 h zu einer Steigerung der Rabphilin-Proteinkonzentration, welche nicht von Änderungen der mRNA-Expression begleitet war. Eine Senkung der Rabphilin-Proteinkonzentration wurde durch Applikation von NOC-5 (4 - 20 µg i.t.), 8-Br-cGMP (0,5 - 2,5 µmol i.t.), oder Rp-8-Br-cGMPS (0,1 - 0,25 µmol i.t.) hervorgerufen. Zusammenfassend bestätigen diese Ergebnisse die Hypothese, dass im Rückenmark PKG-1 einen Effektor der NO-induzierten Hyperalgesie darstellt. Darüber hinaus konnte gezeigt werden, dass NO/cGMP über noch unbekannte Mechanismen die Verfügbarkeit bestimmter synaptischer Vesikelproteine moduliert, die vor allem bei starker oder anhaltender nozizeptiver Erregung für die Transmitterausschüttung und damit für die nozizeptive Transmission notwendig sind. Interessanterweise führt NO/cGMP über diese Mechanismen eher zur Hemmung der Nozizeption, was die bei niedrigen intrathekalen Dosen beobachteten antinozizeptiven Effekte von 8-Br-cGMP erklären kann. Die These der NO-induzierten Hyperalgesie kann aufgrund der Untersuchungen in dieser Arbeit und früherer Studien um eine insbesondere in niedriger Dosis auftretende NO/cGMP-vermittelte Antinozizeption erweitert werden

    The role of cGMP and PKG-I in spinal nociceptive processing

    Get PDF
    First paragraph (this article has no abstract) Persistent stimulation of nociceptors results in sensitization of nociceptive sensory neurons, which is associated with hyperalgesia and allodynia. The release of NO and subsequent synthesis of cGMP in the spinal cord are involved in this process. cGMP-dependent protein kinase I (PKG-I) has been suggested to act as a downstream target of cGMP, but its exact role in nociception hadn't been characterized yet. To further evaluate the NO/cGMP/PKG-I pathway in nociception we assessed the effects of PKG-I inhibiton and activaton in the rat formalin assay and analyzed the nociceptive behavior of PKG-I-/- mice. Open access article

    cGMP-dependent signaling pathways in spinal pain processing

    Get PDF
    Oral presentation from 4th International Conference of cGMP Generators, Effectors and Therapeutic Implications ; Regensburg, Germany. 19–21 June 2009 Background: An exaggerated pain sensitivity is the dominant feature of inflammatory and neuropathic pain both in the clinical setting and in experimental animal models. It manifests as pain in response to normally innocuous stimuli (allodynia), increased response to noxious stimuli (hyperalgesia) or spontaneous pain, and can persist long after the initial injury is resolved. Research over the last decades has revealed that several signaling pathways in the spinal cord essentially contribute to the pain sensitization. To test the contribution of cGMP produced by NO-sensitive guanylyl cyclase (NO-GC) to pain sensitization, we investigated the localization of NO-GC in the spinal cord and in dorsal root ganglia, and we characterized the nociceptive behavior of mice deficient in NO-GC (GC-KO mice). Results: We show that NO-GC (β1 subunit) is distinctly expressed in neurons of the mouse spinal cord, while its distribution in dorsal root ganglia is restricted to non-neuronal cells. GC-KO mice exhibited a considerably reduced nociceptive behavior in models of inflammatory or neuropathic pain, but their responses to acute pain were not impaired. Moreover, GC-KO mice failed to develop pain sensitization induced by spinal administration of drugs releasing NO. Surprisingly, during spinal nociceptive processing cGMP produced by NO-GC may activate signaling pathways different from cGMP-dependent protein kinase I (cGKI), while cGKI can be activated by natriuretic peptide receptor-B (NPR-B) dependent cGMP production. Conclusion: Taken together, our results provide evidence that NO-GC has a dominant role in the development of exaggerated pain sensitivity during inflammatory and neuropathic pain. Furthermore, beside the NO-mediated cGMP synthesis, cGMP produced by NPR-B contributes to pain sensitization by activation of cGKI

    Rab27a Contributes to the Processing of Inflammatory Pain in Mice

    Get PDF
    Tissue injury and inflammation may result in chronic pain, a severe debilitating disease that is associated with great impairment of quality of life. An increasing body of evidence indicates that members of the Rab family of small GTPases contribute to pain processing; however, their specific functions remain poorly understood. Here, we found using immunofluorescence staining and in situ hybridization that the small GTPase Rab27a is highly expressed in sensory neurons and in the superficial dorsal horn of the spinal cord of mice. Rab27a mutant mice, which carry a single-nucleotide missense mutation of Rab27a leading to the expression of a nonfunctional protein, show reduced mechanical hyperalgesia and spontaneous pain behavior in inflammatory pain models, while their responses to acute noxious mechanical and thermal stimuli is not affected. Our study uncovers a previously unrecognized function of Rab27a in the processing of persistent inflammatory pain in mice.publishersversionpublishe

    Cysteine-rich protein 2 is a downstream effector of cGMP-dependent protein kinase I in nociception : poster presentation

    Get PDF
    The experience of pain is mediated by a specialized sensory system, the nociceptive system. There is considerable evidence that the cGMP/cGMP kinase I (cGKI) signaling pathway modulates the nociceptive processing within the spinal cord. However, downstream targets of cGKI in this context have not been identified to date. In this study we investigated whether cysteine-rich protein 2 (CRP2) is a downstream effector of cGKI in the spinal cord and is involved in nociceptive processing. Immunohistochemistry of the mouse spinal cord revealed that CRP2 is expressed in superficial laminae of the dorsal horn. CRP2 is colocalized with cGKI and with markers of primary afferent C fibers. Importantly, the majority of CRP2 mRNA-positive dorsal root ganglion (DRG) neurons express cGKI and CRP2 is phosphorylated in a cGMP-dependent manner. To elucidate the functional role of CRP2 in nociception, we investigated the nociceptive behavior of CRP2-deficient (CRP2-/-) mice. Touch perception and acute thermal nociception were unaltered in CRP2-/- mice. However, CRP2-/- mice showed an increased nociceptive behavior in models of persistent pain as compared to wild type mice. Intrathecal administration of cGKI activating cGMP analogs increased the nociceptive behavior in wild type but not in CRP2-/- mice, indicating that the presence of CRP2 was essential for cGMP/cGKI-mediated nociception. These data indicate that CRP2 is a new downstream effector of cGKI-mediated spinal nociceptive processing and point to an inhibitory role of CRP2 in the generation of inflammatory pain

    Additive Antinociceptive Effects of a Combination of Vitamin C and Vitamin E after Peripheral Nerve Injury

    Get PDF
    Accumulating evidence indicates that increased generation of reactive oxygen species (ROS) contributes to the development of exaggerated pain hypersensitivity during persistent pain. In the present study, we investigated the antinociceptive efficacy of the antioxidants vitamin C and vitamin E in mouse models of inflammatory and neuropathic pain. We show that systemic administration of a combination of vitamins C and E inhibited the early behavioral responses to formalin injection and the neuropathic pain behavior after peripheral nerve injury, but not the inflammatory pain behavior induced by Complete Freund's Adjuvant. In contrast, vitamin C or vitamin E given alone failed to affect the nociceptive behavior in all tested models. The attenuated neuropathic pain behavior induced by the vitamin C and E combination was paralleled by a reduced p38 phosphorylation in the spinal cord and in dorsal root ganglia, and was also observed after intrathecal injection of the vitamins. Moreover, the vitamin C and E combination ameliorated the allodynia induced by an intrathecally delivered ROS donor. Our results suggest that administration of vitamins C and E in combination may exert synergistic antinociceptive effects, and further indicate that ROS essentially contribute to nociceptive processing in special pain states

    Meeting report of the 8th International Conference on cGMP "cGMP: generators, effectors, and therapeutic implications" at Bamberg, Germany, from June 23 to 25, 2017

    No full text
    Although the Nobel Prize for the discovery of nitric oxide (NO) dates back almost 20 years now, the knowledge about cGMP signaling is still constantly increasing. It looks even so that our understanding of the role of the soluble guanylyl cyclase (sGC) and particulate guanylyl cyclase (pGC) in health and disease is in many aspects at the beginning and far from being understood. This holds even true for the therapeutic impact of innovative drugs acting on both the NO/sGC and the pGC pathways. Since cGMP, as second messenger, is involved in the pathogenesis of numerous diseases within the cardiovascular, pulmonary, renal, and endocrine systems and also plays a role in neuronal, sensory, and tumor processes, drug applications might be quite broad. On the 8th International Conference on cGMP, held in Bamberg, Germany, world leading experts came together to discuss these topics. All aspects of cGMP research from the basic understanding of cGMP signaling to clinical applicability were discussed in depth. In addition, present and future therapeutic applications of cGMP-modulating pharmacotherapy were presented (http://www.cyclicgmp.net/index.html)

    Correction to : meeting report of the 8th International Conference on "cGMP BcGMP: generators, effectors, and therapeutic implications" at Bamberg, Germany, from June 23 to 25, 2017

    No full text
    Correction to: Naunyn-Schmiedeberg's Arch Pharmacol (2017) 390:1177–1188, https://doi.org/10.1007/s00210-017-1429-

    NADPH Oxidases in Pain Processing

    No full text
    Inflammation or injury to the somatosensory nervous system may result in chronic pain conditions, which affect millions of people and often cause major health problems. Emerging lines of evidence indicate that reactive oxygen species (ROS), such as superoxide anion or hydrogen peroxide, are produced in the nociceptive system during chronic inflammatory and neuropathic pain and act as specific signaling molecules in pain processing. Among potential ROS sources in the somatosensory system are NADPH oxidases, a group of electron-transporting transmembrane enzymes whose sole function seems to be the generation of ROS. Interestingly, the expression and relevant function of the Nox family members Nox1, Nox2, and Nox4 in various cells of the nociceptive system have been demonstrated. Studies using knockout mice or specific knockdown of these isoforms indicate that Nox1, Nox2, and Nox4 specifically contribute to distinct signaling pathways in chronic inflammatory and/or neuropathic pain states. As selective Nox inhibitors are currently being developed and investigated in various physiological and pathophysiological settings, targeting Nox1, Nox2, and/or Nox4 could be a novel strategy for the treatment of chronic pain. Here, we summarize the distinct roles of Nox1, Nox2, and Nox4 in inflammatory and neuropathic processing and discuss the effectiveness of currently available Nox inhibitors in the treatment of chronic pain conditions
    corecore