4 research outputs found

    Molecular cloning and characterization of a highly selective chemokine-binding protein from the tick Rhipicephalus sanguineus.

    Get PDF
    Abstract Ticks are blood-feeding parasites that secrete a number of immuno-modulatory factors to evade the host immune response. Saliva isolated from different species of ticks has recently been shown to contain chemokine neutralizing activity. To characterize this activity, we constructed a cDNA library from the salivary glands of the common brown dog tick, Rhipicephalus sanguineus. Pools of cDNA clones from the library were transfected into HEK293 cells, and the conditioned media from the transfected cells were tested for chemokine binding activity by chemical cross-linking to radiolabeled CCL3 followed by SDS-PAGE. By de-convolution of a single positive pool of 270 clones, we identified a full-length cDNA encoding a protein of 114 amino acids, which after signal peptide cleavage was predicted to yield a mature protein of 94 amino acids that we called Evasin-1. Recombinant Evasin-1 was produced in HEK293 cells and in insect cells. Using surface plasmon resonance we were able to show that Evasin-1 was exquisitely selective for 3 CC chemokines, CCL3 and CCL4 and the closely related chemokine CCL18, with KD values of 0.16, 0.81, and 3.21 nm, respectively. The affinities for CCL3 and CCL4 were confirmed in competition receptor binding assays. Analysis by size exclusion chromatography demonstrated that Evasin-1 was monomeric and formed a 1:1 complex with CCL3. Thus, unlike the other chemokine-binding proteins identified to date from viruses and from the parasitic worm Schistosoma mansoni, Evasin-1 is highly specific for a subgroup of CC chemokines, which may reflect a specific role for these chemokines in host defense against parasites

    Ticks produce highly selective chemokine binding proteins with antiinflammatory activity

    Get PDF
    Bloodsucking parasites such as ticks have evolved a wide variety of immunomodulatory proteins that are secreted in their saliva, allowing them to feed for long periods of time without being detected by the host immune system. One possible strategy used by ticks to evade the host immune response is to produce proteins that selectively bind and neutralize the chemokines that normally recruit cells of the innate immune system that protect the host from parasites. We have identified distinct cDNAs encoding novel chemokine binding proteins (CHPBs), which we have termed Evasins, using an expression cloning approach. These CHBPs have unusually stringent chemokine selectivity, differentiating them from broader spectrum viral CHBPs. Evasin-1 binds to CCL3, CCL4, and CCL18; Evasin-3 binds to CXCL8 and CXCL1; and Evasin-4 binds to CCL5 and CCL11. We report the characterization of Evasin-1 and -3, which are unrelated in primary sequence and tertiary structure, and reveal novel folds. Administration of recombinant Evasin-1 and -3 in animal models of disease demonstrates that they have potent antiinflammatory properties. These novel CHBPs designed by nature are even smaller than the recently described single-domain antibodies (Hollinger, P., and P.J. Hudson. 2005. Nat. Biotechnol. 23:1126–1136), and may be therapeutically useful as novel antiinflammatory agents in the future

    Continuous Capture scale down model comparison of a continuous and a discrete approach

    No full text
    In continuous pharmaceutical manufacturing, consisting of a perfused batch fermentation and integrated continuous downstream processing (DSP), the continuous capture is the linking unit operation. For the development of this unit operation, scale-down models (SDMs) are crucial, whereas discrete, non-continuous SDMs are preferred over continuous SDM due to their simplistic nature, reduced material consumption, and shorter operation time. The results presented in this study show the suitability of a discrete SDM approach, compared to a continuous SDM for a continuous protein A purification step
    corecore