88 research outputs found

    Association between inflammatory markers and serum paraoxonase and arylesterase activities in the general population: a cross-sectional study

    Get PDF
    Background: Recent studies focused on modulating factors of paraoxonase-1 (PON1) activity. In some studies the association between pro-inflammatory markers and PON1 activity was examined, but so far no population-based investigations on this issue have been conducted. The present study investigated the relationships between the pro-inflammatory markers tumor necrosis factor (TNF)-α, leptin, interleukin (IL)-6, and high-sensitive C-reactive protein (hs-CRP) and paraoxonase and arylesterase, two hydrolytic activities of PON1, in the population-based Bavarian Food Consumption Survey II. Methods: Based on 504 participants (217 men, 287 women), the relationship between the pro-inflammatory markers and the outcomes paraoxonase and arylesterase activities were investigated using multivariable linear models. Results: Circulating plasma levels of leptin (P-value 75th percentile) the activities reached a plateau or even decreased somewhat. After Bonferroni-Holm correction, only leptin remained non-linearly but significantly associated with arylesterase activity (adjusted overall P-value < 0.0001). Neither age nor sex nor obesity modified the associations. No association was found between TNF-α and paraoxonase or arylesterase activity. Conclusions: The present findings suggest that in persons with very high levels of inflammation, PON1 activity may be impaired, a fact that might subsequently be accompanied by a higher risk for cardiometabolic diseases. Whether or not the measurement of PON1 activity in combination with a lipid profile and certain inflammatory markers could improve the prediction of cardiometabolic diseases in middle-aged individuals from the general population should be evaluated in clinical studies. Keywords: Arylesterase activity; Inflammation; Oxidative stress; PON1; Paraoxonase activity. © 2021. The Author(s)

    EFFECT OF TEN DAYS HIGH-INTENSITY TRAINING ON DNA DAMAGE

    Get PDF
    The purpose of this study was to examine the effects of ten days high-intensity training on human PBMC DNA damage. 20 subjects were randomly assigned into two groups (n=10). The intervention group was performing daily cycle training for ten days, while the control group did not exercise at all. Blood samples were analysed the day before training starts in the morning after the last session and after four days of recovery. Daily training was quantified using the TRIMP the RPE scale and lactate concentration. Also the differences in the overall well-being was measured using the MDBF Two-way ANOVA showed no significant differences between the groups in DNA damage. Results have shown that the stress, initiated by the training was not represented in the PBMC

    Sind Bio-Äpfel gesünder?

    Get PDF
    Viele Verbraucher, die sich beim Kauf von Lebensmitteln für Bioprodukte entscheiden, erhoffen sich davon gesundheitsfördernde Effekte. Allerdings liegen bis heute noch nicht genügend wissenschaftliche Daten vor, um ökologisch und konventionell erzeugte Lebensmittel vergleichend ernährungsphysiologisch bewerten zu können. Am Institut für Ernährungsphysiologie der Bundesforschungsanstalt für Ernährung und Lebensmittel (BfEL) wird zurzeit untersucht, ob sich verschiedene pflanzliche Lebensmittel aus ökologischer und konventioneller Anbauweise hinsichtlich ihres Gehaltes an sekundären Pflanzenstoffen und deren ernährungsphysiologischer Wirkung am Menschen unterscheiden

    Microbial Metabolism of the Soy Isoflavones Daidzein and Genistein in Postmenopausal Women: Human Intervention Study Reveals New Metabotypes

    Get PDF
    Background: Soy isoflavones belong to the group of phytoestrogens and are associated with beneficial health effects but are also discussed to have adverse effects. Isoflavones are intensively metabolized by the gut microbiota leading to metabolites with altered estrogenic potency. The population is classified into different isoflavone metabotypes based on individual metabolite profiles. So far, this classification was based on the capacity to metabolize daidzein and did not reflect genistein metabolism. We investigated the microbial metabolite profile of isoflavones considering daidzein and genistein. Methods: Isoflavones and metabolites were quantified in the urine of postmenopausal women receiving a soy isoflavone extract for 12 weeks. Based on these data, women were clustered in different isoflavone metabotypes. Further, the estrogenic potency of these metabotypes was estimated. Results: Based on the excreted urinary amounts of isoflavones and metabolites, the metabolite profiles could be calculated, resulting in 5 metabotypes applying a hierarchical cluster analysis. The metabotypes differed in part strongly regarding their metabolite profile and their estimated estrogenic potency

    Quantification of Urinary Phenyl-γ-Valerolactones and Related Valeric Acids in Human Urine on Consumption of Apples

    Get PDF
    Flavan-3-ols are dietary bioactive molecules that have beneficial effects on human health and reduce the risk of various diseases. Monomeric flavan-3-ols are rapidly absorbed in the small intestine and released in the blood stream as phase II conjugates. Polymeric flavan-3-ols are extensively metabolized by colonic gut microbiota into phenyl-γ-valerolactones and their related phenylvaleric acids. These molecules are the main circulating metabolites in humans after the ingestion of flavan-3-ol rich-products; nevertheless, they have received less attention and their role is not understood yet. Here, we describe the quantification of 8 phenyl-γ-valerolactones and 3 phenylvaleric acids in the urine of 11 subjects on consumption of apples by using UHPLC-ESI-Triple Quad-MS with pure reference compounds. Phenyl-γ-valerolactones, mainly as sulfate and glucuronic acid conjugates, reached maximum excretion between 6 and 12 after apple consumption, with a decline thereafter. Significant differences were detected in the cumulative excretion rates within subjects and in the ratio of dihydroxyphenyl-γ-valerolactone sulfate to glucuronide conjugates. This work observed for the first time the presence of two distinct metabotypes with regards to the excretion of phenyl-γ-valerolactone phase II conjugates

    Glyphosate and AMPA levels in human urine samples and their correlation with food consumption: results of the cross-sectional KarMeN study in Germany

    Get PDF
    Glyphosate (N-[phosphonomethyl]-glycine) is the most widely used herbicide worldwide. Due to health concerns about glyphosate exposure, its continued use is controversially discussed. Biomonitoring is an important tool in safety evaluation and this study aimed to determine exposure to glyphosate and its metabolite AMPA, in association with food consumption data, in participants of the cross-sectional KarMeN study (Germany). Glyphosate and AMPA levels were measured in 24-h urine samples from study participants (n = 301). For safety evaluation, the intake of glyphosate and AMPA was calculated based on urinary concentrations and checked against the EU acceptable daily intake (ADI) value for glyphosate. Urinary excretion of glyphosate and/or AMPA was correlated with food consumption data. 8.3% of the participants (n = 25) exhibited quantifiable concentrations (> 0.2 μg/L) of glyphosate and/or AMPA in their urine. In 66.5% of the samples, neither glyphosate (< 0.05 μg/L) nor AMPA (< 0.09 μg/L) was detected. The remaining subjects (n = 76) showed traces of glyphosate and/or AMPA. The calculated glyphosate and/or AMPA intake was far below the ADI of glyphosate. Significant, positive associations between urinary glyphosate excretion and consumption of pulses, or urinary AMPA excretion and mushroom intake were observed. Despite the widespread use of glyphosate, the exposure of the KarMeN population to glyphosate and AMPA was found to be very low. Based on the current risk assessment of glyphosate by EFSA, such exposure levels are not expected to pose any risk to human health. The detected associations with consuming certain foods are in line with reports on glyphosate and AMPA residues in food

    Effects of dietary milk- and soy phospholipids on lipid-parameters and other risk indicators for cardiovascular diseases in overweight or obese men : two double-blind, randomised, controlled, clinical trials

    Get PDF
    The present study examined the effect of milk phospholipids (milk-PL) on lipid metabolism and on other risk factors for CVD, in comparison with milk fat (control) or soya phospholipids (soya-PL), respectively. Two double-blind parallel-group intervention trials were conducted in overweight or obese male subjects. In the first trial (trial 1), sixty-two men consumed milk enriched with either 2 g milk-PL or 2 g milk fat (control) for 8 weeks. In trial 2, fifty-seven men consumed milk enriched with either 3 g milk-PL or 2·8 g soya-PL for 7 weeks. In trial 1, milk-PL as compared with control reduced waist circumference but did not affect plasma lipids (total, HDL- and LDL-cholesterol, total cholesterol:HDL-cholesterol ratio, TAG, phospholipids), apoB, apoA1, glucose, insulin, insulin sensitivity index, C-reactive protein, IL-6, soluble intracellular adhesion molecule and total homocysteine (tHcy). Serum activities of alanine transaminase and aspartate transaminase were not changed. Activity of γ-glutamyl transferase (GGT), a marker of fatty liver, increased in the control but not in the milk-PL group, with a significant intervention effect. In trial 2, milk-PL as compared with soya-PL did not affect the above-mentioned parameters, but decreased GGT. Subjects with the methylenetetrahydrofolate reductase mutations CT and TT had 11 % (P < 0·05) higher baseline tHcy concentrations than those with the wild-type CC. However, genotype did not modulate the phospholipid intervention effect on tHcy. In conclusion, supplementation with milk-PL as compared with control fat reduced waist circumference and, as compared with both control fat and soya-PL, GGT activity

    DHA-Induced Perturbation of Human Serum Metabolome. Role of the Food Matrix and Co-Administration of Oat β-glucan and Anthocyanins

    Get PDF
    Docosahexaenoic acid (DHA) has been reported to have a positive impact on many diet-related disease risks, including metabolic syndrome. Although many DHA-enriched foods have been marketed, the impact of different food matrices on the effect of DHA is unknown. As well, the possibility to enhance DHA effectiveness through the co-administration of other bioactives has seldom been considered. We evaluated DHA effects on the serum metabolome administered to volunteers at risk of metabolic syndrome as an ingredient of three different foods. Foods were enriched with DHA alone or in combination with oat beta-glucan or anthocyanins and were administered to volunteers for 4 weeks. Serum samples collected at the beginning and end of the trial were analysed by NMR-based metabolomics. Multivariate and univariate statistical analyses were used to characterize modifications in the serum metabolome and to evaluate bioactive-bioactive and bioactive-food matrix interactions. DHA administration induces metabolome perturbation that is influenced by the food matrix and the co-presence of other bioactives. In particular, when co-administered with oat beta-glucan, DHA induces a strong rearrangement in the lipoprotein profile of the subjects. The observed modifications are consistent with clinical results and indicate that metabolomics represents a possible strategy to choose the most appropriate food matrices for bioactive enrichmen

    High-Intensity Interval Training Decreases Resting Urinary Hypoxanthine Concentration in Young Active Men—A Metabolomic Approach

    Get PDF
    High-intensity interval training (HIIT) is known to improve performance and skeletal muscle energy metabolism. However, whether the body’s adaptation to an exhausting short-term HIIT is reflected in the resting human metabolome has not been examined so far. Therefore, a randomized controlled intervention study was performed to investigate the effect of a ten-day HIIT on the resting urinary metabolome of young active men. Fasting spot urine was collected before (−1 day) and after (+1 day; +4 days) the training intervention and 65 urinary metabolites were identified by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. Metabolite concentrations were normalized to urinary creatinine and subjected to univariate statistical analysis. One day after HIIT, no overall change in resting urinary metabolome, except a significant difference with decreasing means in urinary hypoxanthine concentration, was documented in the experimental group. As hypoxanthine is related to purine degradation, lower resting urinary hypoxanthine levels may indicate a training-induced adaptation in purine nucleotide metabolism
    corecore