33 research outputs found

    A Multidimensional Study of the Structure Function Ratio σLT\u27/ σ₀ From Hard Exclusive ⁺ Electro-Production Off Protons in the GPD Regime

    Get PDF
    A multidimensional extraction of the structure function ratio from the hard exclusive →ep → e\u27n+ reaction above the resonance region has been performed. The study was done based on beam-spin asymmetry measurements using a 10.6 GeV incident electron beam on a liquid-hydrogen target and the CLAS12 spectrometer at Jefferson Lab. The measurements focus on the very forward regime (t/Q2≪ 1) with a wide kinematic range of in the valence regime (0.17 \u3c B \u3c 0.55), and virtualities ranging from 1.5 GeV2 up to 6 GeV2. The results and their comparison to theoretical models based on Generalized Parton Distributions demonstrate the sensitivity to chiral-odd GPDs and the directly related tensor charge of the nucleon. In addition, the data is compared to an extension of a Regge formalism at high photon virtualities. It was found that the Regge model provides a better description at low Q2, while the GPD model is more appropriate at high Q2

    The present and future of QCD

    Get PDF
    This White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades

    Time-resolved autoantibody profiling facilitates stratification of preclinical type 1 diabetes in children.

    No full text
    Progression to clinical type 1 diabetes varies among children who develop beta-cell autoantibodies. Differences in autoantibody patterns could relate to disease progression and etiology. Here we modeled complex longitudinal auto-antibody profiles by using a novel wavelet-based algorithm. We identified clusters of similar profiles associated with various types of progression among 600 children from The Environmental Determinants of Diabetes in the Young (TEDDY) birth cohort study; these children developed persistent insulin autoantibodies (IAA), GAD autoantibodies (GADA), insulinoma-associated antigen 2 autoantibodies (IA-2A), or a combination of these, and they were followed up prospectively at 3- to 6-month intervals (median follow-up 6.5 years). Children who developed multiple autoantibody types (n = 370) were clustered, and progression from seroconversion to clinical diabetes within 5 years ranged between clusters from6%(95% CI 0, 17.4) to 84% (59.2, 93.6). Children who seroconverted early in life (median age <2 years) and developed IAA and IA-2A that were stable-positive on follow-up had the highest risk of diabetes, and this risk was unaffected by GADA status. Clusters of children who lacked stable-positive GADA responses contained more boys and lower frequencies of the HLA-DR3 allele. Our novel algorithm allows refined grouping of beta-cell autoantibody-positive children who distinctly progressed to clinical type 1 diabetes, and it provides new opportunities in searching for etiological factors and elucidating complex disease mechanisms
    corecore