414 research outputs found

    Lymphatic density and metastatic spread in human malignant melanoma

    Get PDF
    Lymphatic density and metastatic spread in human malignant melanoma. Malignant melanoma (MM), the most common cause of skin cancer deaths, metastasises to regional lymph nodes. In animal models of other cancers, lymphatic growth is associated with metastasis. To assess if lymphatic density (LD) was increased in human MM, and its association with metastasis, we measured LD inside and around archival MM samples (MM, n = 21), and compared them with normal dermis (n = 11), basal cell carcinoma (BCC, n = 6) and Merkel cell carcinoma (MCC), a skin tumour thought to metastasise through a vascular route (MCC, n = 6). Lymphatic capillary density (mm(-2)), as determined by immunohistochemical staining with the lymphatic specific marker LYVE-1, was significantly increased around MM (10.0+/-2.5 mm(-2)) compared with normal dermis (2.4+/-0.9 mm(-2)), BCC (3.0+/-0.9 mm(-2)) and MCC (2.4+/-1.4 mm(-2)) (P<0.0001). There was a small decrease in LD inside MM (1.1+/-0.7 mm(-2)) compared with normal dermis, but a highly significant decrease in BCC (0.14+/-0.13) and MCC (0.12+/-2.4) (P<0.01 Kruskal-Wallis). Astonishingly, LD discriminated between melanomas that subsequently metastasised (12.8+/-1.6 mm(-2)) and those that did not (5.4+/-1.1 mm(-2), P<0.01, Mann-Whitney). Lymphatic invasion by tumour cells was seen mainly in MM that metastasised (70% compared with 12% not metastasising, P<0.05 Fisher's Exact test). The results show that LD was increased around MMs, and that LD and tumour cell invasion of lymphatics may help to predict metastasis. To this end, a prognostic index was calculated using LD, lymphatic invasion and thickness that clearly discriminated metastatic from nonmetastatic tumours

    Lymphatic vessel density and function in experimental bladder cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The lymphatics form a second circulatory system that drains the extracellular fluid and proteins from the tumor microenvironment, and provides an exclusive environment in which immune cells interact and respond to foreign antigen. Both cancer and inflammation are known to induce lymphangiogenesis. However, little is known about bladder lymphatic vessels and their involvement in cancer formation and progression.</p> <p>Methods</p> <p>A double transgenic mouse model was generated by crossing a bladder cancer-induced transgenic, in which SV40 large T antigen was under the control of uroplakin II promoter, with another transgenic mouse harboring a <it>lacZ </it>reporter gene under the control of an NF-κB-responsive promoter (κB-<it>lacZ</it>) exhibiting constitutive activity of β-galactosidase in lymphatic endothelial cells. In this new mouse model (SV40-<it>lacZ</it>), we examined the lymphatic vessel density (LVD) and function (LVF) during bladder cancer progression. LVD was performed in bladder whole mounts and cross-sections by fluorescent immunohistochemistry (IHC) using LYVE-1 antibody. LVF was assessed by real-time <it>in vivo </it>imaging techniques using a contrast agent (biotin-BSA-Gd-DTPA-Cy5.5; Gd-Cy5.5) suitable for both magnetic resonance imaging (MRI) and near infrared fluorescence (NIRF). In addition, IHC of Cy5.5 was used for time-course analysis of co-localization of Gd-Cy5.5 with LYVE-1-positive lymphatics and CD31-positive blood vessels.</p> <p>Results</p> <p>SV40-<it>lacZ </it>mice develop bladder cancer and permitted visualization of lymphatics. A significant increase in LVD was found concomitantly with bladder cancer progression. Double labeling of the bladder cross-sections with LYVE-1 and Ki-67 antibodies indicated cancer-induced lymphangiogenesis. MRI detected mouse bladder cancer, as early as 4 months, and permitted to follow tumor sizes during cancer progression. Using Gd-Cy5.5 as a contrast agent for MRI-guided lymphangiography, we determined a possible reduction of lymphatic flow within the tumoral area. In addition, NIRF studies of Gd-Cy5.5 confirmed its temporal distribution between CD31-positive blood vessels and LYVE-1 positive lymphatic vessels.</p> <p>Conclusion</p> <p>SV40-<it>lacZ </it>mice permit the visualization of lymphatics during bladder cancer progression. Gd-Cy5.5, as a double contrast agent for NIRF and MRI, permits to quantify delivery, transport rates, and volumes of macromolecular fluid flow through the interstitial-lymphatic continuum. Our results open the path for the study of lymphatic activity <it>in vivo </it>and in real time, and support the role of lymphangiogenesis during bladder cancer progression.</p

    Hematopoietic Stem Cells Contribute to Lymphatic Endothelium

    Get PDF
    Although the lymphatic system arises as an extension of venous vessels in the embryo, little is known about the role of circulating progenitors in the maintenance or development of lymphatic endothelium. Here, we investigated whether hematopoietic stem cells (HSCs) have the potential to give rise to lymphatic endothelial cells (LEC). mice resulted in the incorporation of donor-derived LEC into the lymphatic vessels of spontaneously arising intestinal tumors.Our results indicate that HSCs can contribute to normal and tumor associated lymphatic endothelium. These findings suggest that the modification of HSCs may be a novel approach for targeting tumor metastasis and attenuating diseases of the lymphatic system

    Recombinant Human Endostatin Endostar Inhibits Tumor Growth and Metastasis in a Mouse Xenograft Model of Colon Cancer

    Get PDF
    To investigate the effects of recombinant human endostatin Endostar on metastasis and angiogenesis and lymphangiogenesis of colorectal cancer cells in a mouse xenograft model. Colon cancer cells SW620 were injected subcutaneously into the left hind flank of nude mice to establish mouse xenograft models. The mice were treated with normal saline or Endostar subcutaneously every other day. The growth and lymph node metastasis of tumor cells, angiogenesis and lymphangiogenesis in tumor tissue were detected. Apoptosis and cell cycle distribution were studied by flow cytometry. The expression of VEGF-A, -C, or -D in SW620 cells was determined by immunoblotting assays. Endostar inhibited tumor growth and the rate of lymph node metastasis (P < 0.01). The density of blood vessels in or around the tumor area was 12.27 ± 1.21 and 22.25 ± 2.69 per field in Endostar-treated mice and controls (P < 0.05), respectively. Endostar also decreased the density of lymphatic vessels in tumor tissues (7.84 ± 0.81 vs. 13.83 ± 1.08, P < 0.05). Endostar suppresses angiogenesis and lymphangiogenesis in the lymph nodes with metastases, simultaneously. The expression of VEGF-A, -C and -D in SW620 cells treated with Endostar was substantially lower than that of controls. Endostar inhibited growth and lymph node metastasis of colon cancer cells by inhibiting angiogenesis and lymphangiogenesis in a mouse xenograft model of colon cancer

    The South, the suburbs, and the Vatican too: explaining partisan change among Catholics

    Get PDF
    This paper explains changes in partisanship among Catholics in the last quarter of the 20th Century using a theory of partisan change centered on the contexts in which Catholics lived. Catholics were part of the post-New Deal Democratic coalition, but they have become a swing demographic group. We argue that these changes in partisanship are best explained by changes in elite messages that are filtered through an individual’s social network. Those Catholics who lived or moved into the increasingly Republican suburbs and South were the Catholics who were most likely to adopt a non-Democratic partisan identity. Changes in context better explain Catholic partisanship than party abortion policy post Roe v. Wade or ideological sorting. We demonstrate evidence in support of our argument using the ANES cumulative file from 1972 through 2000

    Mechanism of IL-12 mediated alterations in tumour blood vessel morphology: analysis using whole-tissue mounts

    Get PDF
    Angiogenesis is a multistep process that is limited and carefully regulated in normal adult tissue, but in tumours this regulation is disrupted and the process remains ‘switched on’ (Hanahan and Folkman, 1996). Ample experimental data support the fact that tumour growth requires access to blood vessels and subsequent expansion of host vessels to provide nutrients for the growing tumour mass (Folkman, 1995a). Furthermore, many studies in a variety of tumour types have reported a correlation between the extent of tumour vasculature and poor prognosis or increased metastases (Weidner et al, 1991; Folkman, 1995b; Weidner and Folkman, 1996). Thus, accurate assessment of the vasculature of tumours could provide valuable information regarding treatment outcomes and the likelihood of metastatic spread to other sites. Angiogenesis can be regulated by a variety of factors. Several cytokines produced by immune cells also have been shown to affect the process of angiogenesis. One of the most noteworthy is interleukin (IL)-12, which is produced by antigen presenting cells (APC), such as macrophages and dendritic cells (DC) in response to bacterial stimuli or other inflammatory cytokines. Thus, IL-12 plays an important role in both the innate and adaptive immune responses (Trinchieri, 1998). Owing to its central role in stimulating immunity, it has been examined for possible therapeutic effects in the treatment of tumours. In addition to its effects on the immune system, IL-12 has also been shown to inhibit angiogenesis (Voest et al, 1995; Sgadari et al, 1996). Despite studies in both experimental models and in patients (reviewed in Trinchieri and Scott, 1999), and clear demonstrations of therapeutic efficacy, relatively little is known about how it alters vessel formation within tumours. In part, this is due to the difficulty in assessing the three-dimensional structure of vessels and other cellular components within the tumour. Assessment of tumour vessels is generally based on immunohistochemistry of tumour sections. Although use of this technique has led to a great deal of important information, these procedures are extremely time consuming and provide only a limited two-dimensional view of the vessels. This makes it very difficult to visualise the structure of the microvasculature and identify differences among different tumour types or changes following treatment regimens. To more easily and accurately visualise vessels within tumours, we developed a whole-tissue mount technique that provides a three-dimensional view of the tumour vasculature relative to other components of the tumour tissue. This technique was first validated by studying vessels from transgenic mice that express green fluorescent protein (GFP) (Wu et al, 2000), and then used to investigate the mechanism by which IL-12 influences the vessel architecture within B16 tumours
    • …
    corecore