1,928 research outputs found
A Novel Method for Epileptic Seizure Detection Using Coupled Hidden Markov Models
We propose a novel Coupled Hidden Markov Model to detect epileptic seizures
in multichannel electroencephalography (EEG) data. Our model defines a network
of seizure propagation paths to capture both the temporal and spatial evolution
of epileptic activity. To address the intractability introduced by the coupled
interactions, we derive a variational inference procedure to efficiently infer
the seizure evolution from spectral patterns in the EEG data. We validate our
model on EEG aquired under clinical conditions in the Epilepsy Monitoring Unit
of the Johns Hopkins Hospital. Using 5-fold cross validation, we demonstrate
that our model outperforms three baseline approaches which rely on a classical
detection framework. Our model also demonstrates the potential to localize
seizure onset zones in focal epilepsy.Comment: To appear in MICCAI 2018 Proceeding
SeizureNet: Multi-Spectral Deep Feature Learning for Seizure Type Classification
Automatic classification of epileptic seizure types in electroencephalograms
(EEGs) data can enable more precise diagnosis and efficient management of the
disease. This task is challenging due to factors such as low signal-to-noise
ratios, signal artefacts, high variance in seizure semiology among epileptic
patients, and limited availability of clinical data. To overcome these
challenges, in this paper, we present SeizureNet, a deep learning framework
which learns multi-spectral feature embeddings using an ensemble architecture
for cross-patient seizure type classification. We used the recently released
TUH EEG Seizure Corpus (V1.4.0 and V1.5.2) to evaluate the performance of
SeizureNet. Experiments show that SeizureNet can reach a weighted F1 score of
up to 0.94 for seizure-wise cross validation and 0.59 for patient-wise cross
validation for scalp EEG based multi-class seizure type classification. We also
show that the high-level feature embeddings learnt by SeizureNet considerably
improve the accuracy of smaller networks through knowledge distillation for
applications with low-memory constraints
Multi-Scale Convolutional Neural Network for Accurate Corneal Segmentation in Early Detection of Fungal Keratitis.
Microbial keratitis is an infection of the cornea of the eye that is commonly caused by prolonged contact lens wear, corneal trauma, pre-existing systemic disorders and other ocular surface disorders. It can result in severe visual impairment if improperly managed. According to the latest World Vision Report, at least 4.2 million people worldwide suffer from corneal opacities caused by infectious agents such as fungi, bacteria, protozoa and viruses. In patients with fungal keratitis (FK), often overt symptoms are not evident, until an advanced stage. Furthermore, it has been reported that clear discrimination between bacterial keratitis and FK is a challenging process even for trained corneal experts and is often misdiagnosed in more than 30% of the cases. However, if diagnosed early, vision impairment can be prevented through early cost-effective interventions. In this work, we propose a multi-scale convolutional neural network (MS-CNN) for accurate segmentation of the corneal region to enable early FK diagnosis. The proposed approach consists of a deep neural pipeline for corneal region segmentation followed by a ResNeXt model to differentiate between FK and non-FK classes. The model trained on the segmented images in the region of interest, achieved a diagnostic accuracy of 88.96%. The features learnt by the model emphasize that it can correctly identify dominant corneal lesions for detecting FK
Artificial intelligence assisted tools for the detection of anxiety and depression leading to suicidal ideation in adolescents: a review
Epidemiological studies report high levels of anxiety and depression amongst adolescents. These psychiatric conditions and complex interplays of biological, social and environmental factors are important risk factors for suicidal behaviours and suicide, which show a peak in late adolescence and early adulthood. Although deaths by suicide have fallen globally in recent years, suicide deaths are increasing in some countries, such as the US. Suicide prevention is a challenging global public health problem. Currently, there aren’t any validated clinical biomarkers for suicidal diagnosis, and traditional methods exhibit limitations. Artificial intelligence (AI) is budding in many fields, including in the diagnosis of medical conditions. This review paper summarizes recent studies (past 8 years) that employed AI tools for the automated detection of depression and/or anxiety disorder and discusses the limitations and effects of some modalities. The studies assert that AI tools produce promising results and could overcome the limitations of traditional diagnostic methods. Although using AI tools for suicidal ideation exhibits limitations, these are outweighed by the advantages. Thus, this review article also proposes extracting a fusion of features such as facial images, speech signals, and visual and clinical history features from deep models for the automated detection of depression and/or anxiety disorder in individuals, for future work. This may pave the way for the identification of individuals with suicidal thoughts
Automated COVID-19 and Heart Failure Detection Using DNA Pattern Technique with Cough Sounds.
COVID-19 and heart failure (HF) are common disorders and although they share some similar symptoms, they require different treatments. Accurate diagnosis of these disorders is crucial for disease management, including patient isolation to curb infection spread of COVID-19. In this work, we aim to develop a computer-aided diagnostic system that can accurately differentiate these three classes (normal, COVID-19 and HF) using cough sounds. A novel handcrafted model was used to classify COVID-19 vs. healthy (Case 1), HF vs. healthy (Case 2) and COVID-19 vs. HF vs. healthy (Case 3) automatically using deoxyribonucleic acid (DNA) patterns. The model was developed using the cough sounds collected from 241 COVID-19 patients, 244 HF patients, and 247 healthy subjects using a hand phone. To the best our knowledge, this is the first work to automatically classify healthy subjects, HF and COVID-19 patients using cough sounds signals. Our proposed model comprises a graph-based local feature generator (DNA pattern), an iterative maximum relevance minimum redundancy (ImRMR) iterative feature selector, with classification using the k-nearest neighbor classifier. Our proposed model attained an accuracy of 100.0%, 99.38%, and 99.49% for Case 1, Case 2, and Case 3, respectively. The developed system is completely automated and economical, and can be utilized to accurately detect COVID-19 versus HF using cough sounds
Multilevel Deep Feature Generation Framework for Automated Detection of Retinal Abnormalities Using OCT Images.
Optical coherence tomography (OCT) images coupled with many learning techniques have been developed to diagnose retinal disorders. This work aims to develop a novel framework for extracting deep features from 18 pre-trained convolutional neural networks (CNN) and to attain high performance using OCT images. In this work, we have developed a new framework for automated detection of retinal disorders using transfer learning. This model consists of three phases: deep fused and multilevel feature extraction, using 18 pre-trained networks and tent maximal pooling, feature selection with ReliefF, and classification using the optimized classifier. The novelty of this proposed framework is the feature generation using widely used CNNs and to select the most suitable features for classification. The extracted features using our proposed intelligent feature extractor are fed to iterative ReliefF (IRF) to automatically select the best feature vector. The quadratic support vector machine (QSVM) is utilized as a classifier in this work. We have developed our model using two public OCT image datasets, and they are named database 1 (DB1) and database 2 (DB2). The proposed framework can attain 97.40% and 100% classification accuracies using the two OCT datasets, DB1 and DB2, respectively. These results illustrate the success of our model
A Review on Computer Aided Diagnosis of Acute Brain Stroke.
Amongst the most common causes of death globally, stroke is one of top three affecting over 100 million people worldwide annually. There are two classes of stroke, namely ischemic stroke (due to impairment of blood supply, accounting for ~70% of all strokes) and hemorrhagic stroke (due to bleeding), both of which can result, if untreated, in permanently damaged brain tissue. The discovery that the affected brain tissue (i.e., 'ischemic penumbra') can be salvaged from permanent damage and the bourgeoning growth in computer aided diagnosis has led to major advances in stroke management. Abiding to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines, we have surveyed a total of 177 research papers published between 2010 and 2021 to highlight the current status and challenges faced by computer aided diagnosis (CAD), machine learning (ML) and deep learning (DL) based techniques for CT and MRI as prime modalities for stroke detection and lesion region segmentation. This work concludes by showcasing the current requirement of this domain, the preferred modality, and prospective research areas
A critical look at studies applying over-sampling on the TPEHGDB dataset
Preterm birth is the leading cause of death among young children and has a large prevalence globally. Machine learning models, based on features extracted from clinical sources such as electronic patient files, yield promising results. In this study, we review similar studies that constructed predictive models based on a publicly available dataset, called the Term-Preterm EHG Database (TPEHGDB), which contains electrohysterogram signals on top of clinical data. These studies often report near-perfect prediction results, by applying over-sampling as a means of data augmentation. We reconstruct these results to show that they can only be achieved when data augmentation is applied on the entire dataset prior to partitioning into training and testing set. This results in (i) samples that are highly correlated to data points from the test set are introduced and added to the training set, and (ii) artificial samples that are highly correlated to points from the training set being added to the test set. Many previously reported results therefore carry little meaning in terms of the actual effectiveness of the model in making predictions on unseen data in a real-world setting. After focusing on the danger of applying over-sampling strategies before data partitioning, we present a realistic baseline for the TPEHGDB dataset and show how the predictive performance and clinical use can be improved by incorporating features from electrohysterogram sensors and by applying over-sampling on the training set
Automated IMT estimation and BMI correlation using a low-quality carotid ultrasound image database from India.
This paper presents AtheroEdgeLowRes (AELR), an extention of AtheroEdge™ from AtheroPoint™, and a solution to carotid ultrasound IMT measurement in low-resolution and overall low quality images. The images were collected using a low-end ultrasound machine during a screening study in India. We aim to demonstrate the accuracy and reproducibility of the AELR system by benchmarking it against an expert Reader's manual tracing and to show the correlation between the automatically measured intima media thickness (IMT) and the subjects' cardiovascular risk factors (i.e. body mass index - BMI). We introduced an innovative penalty function (PF) to our dual-snake segmentation technique, necessary due to the low image resolution. We processed 512 images from 256 patients, and correlated the AELR IMT values with the patients' age and BMI. AELR processed all 512 images, and the IMT measurement error was 0.011±0.099 mm with the PF correction and 0.173±0.127 mm without. AELR IMT values correlated with the Reader's values (r = 0.883) and also correlated with the subject's BMI and age. The AELR system showed accuracy and reproducibility levels that make it suitable to be used in large epidemiological and screening studies in emerging countries
Automated Diabetic Retinopathy Detection Using Horizontal and Vertical Patch Division-Based Pre-Trained DenseNET with Digital Fundus Images.
Diabetic retinopathy (DR) is a common complication of diabetes that can lead to progressive vision loss. Regular surveillance with fundal photography, early diagnosis, and prompt intervention are paramount to reducing the incidence of DR-induced vision loss. However, manual interpretation of fundal photographs is subject to human error. In this study, a new method based on horizontal and vertical patch division was proposed for the automated classification of DR images on fundal photographs. The novel sides of this study are given as follows. We proposed a new non-fixed-size patch division model to obtain high classification results and collected a new fundus image dataset. Moreover, two datasets are used to test the model: a newly collected three-class (normal, non-proliferative DR, and proliferative DR) dataset comprising 2355 DR images and the established open-access five-class Asia Pacific Tele-Ophthalmology Society (APTOS) 2019 dataset comprising 3662 images. Two analysis scenarios, Case 1 and Case 2, with three (normal, non-proliferative DR, and proliferative DR) and five classes (normal, mild DR, moderate DR, severe DR, and proliferative DR), respectively, were derived from the APTOS 2019 dataset. These datasets and these cases have been used to demonstrate the general classification performance of our proposal. By applying transfer learning, the last fully connected and global average pooling layers of the DenseNet201 architecture were used to extract deep features from input DR images and each of the eight subdivided horizontal and vertical patches. The most discriminative features are then selected using neighborhood component analysis. These were fed as input to a standard shallow cubic support vector machine for classification. Our new DR dataset obtained 94.06% and 91.55% accuracy values for three-class classification with 80:20 hold-out validation and 10-fold cross-validation, respectively. As can be seen from steps of the proposed model, a new patch-based deep-feature engineering model has been proposed. The proposed deep-feature engineering model is a cognitive model, since it uses efficient methods in each phase. Similar excellent results were seen for three-class classification with the Case 1 dataset. In addition, the model attained 87.43% and 84.90% five-class classification accuracy rates using 80:20 hold-out validation and 10-fold cross-validation, respectively, on the Case 2 dataset, which outperformed prior DR classification studies based on the five-class APTOS 2019 dataset. Our model attained about >2% classification results compared to others. These findings demonstrate the accuracy and robustness of the proposed model for classification of DR images
- …