3 research outputs found

    Variation in grain zinc and iron concentrations, grain yield and associated traits of biofortified bread wheat genotypes in Nepal

    Get PDF
    Wheat (Triticum aestivum L.) is one of the major staples in Nepal providing the bulk of food calories and at least 30% of Fe and Zn intake and 20% of dietary energy and protein consumption; thus, it is essential to improve its nutritional quality. To select high-yielding genotypes with elevated grain zinc and iron concentration, the sixth, seventh, eighth, and ninth HarvestPlus Yield Trials (HPYTs) were conducted across diverse locations in Nepal for four consecutive years: 2015–16, 2016–17, 2017–18, and 2018–19, using 47 biofortified and 3 non-biofortified CIMMYT-bred, bread wheat genotypes: Baj#1, Kachu#1, and WK1204 (local check). Genotypic and spatial variations were found in agro-morphological traits; grain yield and its components; and the grain zinc and iron concentration of tested genotypes. Grain zinc concentration was highest in Khumaltar and lowest in Kabre. Likewise, grain iron concentration was highest in Doti and lowest in Surkhet. Most of the biofortified genotypes were superior for grain yield and for grain zinc and iron concentration to the non-biofortified checks. Combined analyses across environments showed moderate to high heritability for both Zn (0.48–0.81) and Fe (0.46–0.79) except a low heritability for Fe observed for 7th HPYT (0.15). Grain yield was positively correlated with the number of tillers per m2, while negatively correlated with days to heading and maturity, grain iron, grain weight per spike, and thousand grain weight. The grain zinc and iron concentration were positively correlated, suggesting that the simultaneous improvement of both micronutrients is possible through wheat breeding. Extensive testing of CIMMYT derived high Zn wheat lines in Nepal led to the release of five biofortified wheat varieties in 2020 with superior yield, better disease resistance, and 30–40% increased grain Zn and adaptable to a range of wheat growing regions in the country – from the hotter lowland, or Terai, regions to the dry mid- and high-elevation areas

    Neglected High Altitude Rangelands of Nepal: Need for Reform

    No full text

    Study on the effects of green-based plant extracts and water-proofers as anti-corrosion agents for steel-reinforced concrete slabs

    No full text
    Widespread applications of reinforced concrete structures have been practiced since the 20th century because of their excellent properties despite their early corrosion degradation. For the control of such a problem, a design strategy of corrosion-resistant environments of the reinforced concrete structures is highly desirable for extending of a lifetime. The present research work was focused to investigate the effects of the green plant extract-based inhibitors from Vitex negundo and Catharanthus roseus leaves, and one waterproofing chemical (PtS) for controlling the corrosion susceptibility of concrete rebar using a half-cell potential method following the ASTM C876-91 standard. Both plant extracts have good anti-corrosion properties, and hence could be applied as green concrete additives to increase the corrosion resistance of the steel reinforcing bars. The anti-corrosion performance of the steel rebars in concrete is remarkably higher with the additions of 1000 and 2000 ppm plant extracts than the additions of waterproofing chemicals used, based on the shifting of corrosion potential (ϕcorr.) values to a more positive direction than −126 mV (SCE). The results agreed that both the plant extracts could be promising for the formulation of effective, ecofriendly anti-corrosion additives to delay the corrosion susceptibility of the concrete infrastructures
    corecore