101 research outputs found
Galactic periodicity and the oscillating G model
We consider the model involving the oscillation of the effective
gravitational constant that has been put forward in an attempt to reconcile the
observed periodicity in the galaxy number distribution with the standard
cosmological models. This model involves a highly nonlinear dynamics which we
analyze numerically. We carry out a detailed study of the bound that
nucleosynthesis imposes on this model. The analysis shows that for any assumed
value for (the total energy density) one can fix the value of
(the baryonic energy density) in such a way as to
accommodate the observational constraints coming from the
primordial abundance. In particular, if we impose the inflationary value
the resulting baryonic energy density turns out to be . This result lies in the very narrow range allowed by the observed values of the primordial
abundances of the other light elements. The remaining fraction of
corresponds to dark matter represented by a scalar field.Comment: Latex file 29 pages with no figures. Please contact M.Salgado for
figures. A more careful study of the model appears in gr-qc/960603
Utilização do adesivo a base de cianoacrilato na sĂntese do coto brĂŽnquico apĂłs lobectomia pulmonar em cĂŁes (Canis familiaris)
O artigo nĂŁo apresenta resumo
Bianchi I Quantum cosmology in the Bergmann-Wagoner theory
The Wheeler-DeWitt equation is considered in the context of generalized
scalar-tensor theories of gravitation for Bianchi type I cosmology. Exact
solutions are found for two selfinteracting potentials and arbitary coupling
function. The WKB wavefunctions are obtained and a family of solutions
satisfying the Hawking-Page regularity conditions of wormholes are found.Comment: 12 pages, Latex fil
High frequency oscillations of Newton's constant induced by inflation
We examine the possibility that an epoch of inflationary expansion induces
high-frequency oscillations of Newton's constant, . The effect occurs
because inflation can shift the expectation value of a non-minimally coupled,
Brans-Dicke-like field away from the minimum of its effective potential. At
some time after inflation ends, the field begins to oscillate, resulting in
periodic variations in . We find conditions for which the oscillation energy
would be sufficient to close the universe, consistent with all known
constraints from cosmology and local tests of general relativity.Comment: 30 pages, Penn Preprint UPR-0628T, Wash. U. Preprint WUGRAV 94-10
Four figures available by ftp (read comment at head of file
Dark energy and dark matter from an inhomogeneous dilaton
A cosmological scenario is proposed where the dark matter (DM) and dark
energy (DE) of the universe are two simultaneous manifestations of an
inhomogenous dilaton. The equation of state of the field is scale-dependent and
pressureless at galactic and larger scales and it has negative pressure as a DE
at very large scales. The dilaton drives an inflationary phase followed by a
kinetic energy-dominated one, as in the "quintessential inflation" model
introduced by Peebles & Vilenkin, and soon after the end of inflation particle
production seeds the first inhomogeneities that lead to galaxy formation. The
dilaton is trapped near the minimum of the potential where it oscillates like a
massive field, and the excess of kinetic energy is dissipated via the mechanism
of "gravitational cooling" first introduced by Seidel & Suen. The
inhomogeneities therefore behave like solitonic oscillations around the minimum
of the potential, known as "oscillatons", that we propose account for most DM
in galaxies. Those regions where the dilaton does not transform enough kinetic
energy into reheating or carry an excess of it from regions that have cooled,
evolve to the tail of the potential as DE, driving the acceleration of the
universe.Comment: 9 pages, 8 figures, uses revtex, submitted PR
Scaling solutions in general non-minimal coupling theories
A class of generalized non-minimal coupling theories is investigated, in
search of scaling attractors able to provide an accelerated expansion at the
present time. Solutions are found in the strong coupling regime and when the
coupling function and the potential verify a simple relation. In such cases,
which include power law and exponential functions, the dynamics is independent
of the exact form of the coupling and the potential. The constraint from the
time variability of , however, limits the fraction of energy in the scalar
field to less than 4% of the total energy density, and excludes accelerated
solutions at the present.Comment: 10 pages, 3 figures, accepted for publication in Phys. Rev.
Complete power spectrum for an induced gravity open inflation model
We study the phenomenological constraints on a recently proposed model of
open inflation in the context of induced gravity. The main interest of this
model is the relatively small number of parameters, which may be constrained by
many different types of observation. We evaluate the complete spectrum of
density perturbations, which contains continuum sub-curvature modes, a discrete
super curvature mode, and a mode associated with fluctuations in the bubble
wall. From these, we compute the angular power spectrum of temperature
fluctuations in the microwave background, and derive bounds on the parameters
of the model so that the predicted spectrum is compatible with the observed
anisotropy of the microwave background and with large-scale structure
observations. We analyze the matter era and the approach of the model to
general relativity. The model passes all existing constraints.Comment: 12 pages RevTeX file with four figures incorporated (uses RevTeX and
epsf). Also available by e-mailing ARL, or by WWW at
http://star-www.maps.susx.ac.uk/papers/early_papers.html Only change is
additional reference
Chaotic Inflationary Universe on Brane
The chaotic inflationary model of the early universe, proposed by Linde is
explored in the brane world considering matter described by a minimally coupled
self interacting scalar field. We obtain cosmological solutions which admit
evolution of a universe either from a singularity or without a singularity. It
is found that a very weakly coupled self-interacting scalar field is necessary
for a quartic type potential in the brane world model compared to that
necessary in general relativity. In the brane world sufficient inflation may be
obtained even with an initial scalar field having value less than the Planck
scale. It is found that if the universe is kinetic energy dominated to begin
with, it transits to an inflationary stage subsequently.Comment: 13 pages, no fig., accepted in Physical Review
Extended Inflation with a Curvature-Coupled Inflaton
We examine extended inflation models enhanced by the addition of a coupling
between the inflaton field and the space-time curvature. We examine two types
of model, where the underlying inflaton potential takes on second-order and
first-order form respectively. One aim is to provide models which satisfy the
solar system constraints on the Brans--Dicke parameter . This
constraint has proven very problematic in previous extended inflation models,
and we find circumstances where it can be successfully evaded, though the
constraint must be carefully assessed in our model and can be much stronger
than the usual . In the simplest versions of the model, one may
avoid the need to introduce a mass for the Brans--Dicke field in order to
ensure that it takes on the correct value at the present epoch, as seems to be
required in hyperextended inflation. We also briefly discuss aspects of the
formation of topological defects in the inflaton field itself.Comment: 24 pages, LaTeX (no figures), to appear, Physical Review D,
mishandling of the solar system constraint on extended gravity theories
corrected, SUSSEX-AST 93/6-
Scalar-Tensor Cosmological Models
We analyze the qualitative behaviors of scalar-tensor cosmologies with an
arbitrary monotonic function. In particular, we are interested
on scalar-tensor theories distinguishable at early epochs from General
Relativity (GR) but leading to predictions compatible with solar-system
experiments. After extending the method developed by Lorentz-Petzold and
Barrow, we establish the conditions required for convergence towards GR at
. Then, we obtain all the asymptotic analytical solutions
at early times which are possible in the framework of these theories. The
subsequent qualitative evolution, from these asymptotic solutions until their
later convergence towards GR, has been then analyzed by means of numerical
computations. From this analysis, we have been able to establish a
classification of the different qualitative behaviors of scalar-tensor
cosmological models with an arbitrary monotonic function.Comment: uuencoded compressed postscript file containing 41 pages, with 9
figures, accepted for publication in Physical Review
- âŠ