218 research outputs found
Fusion of Learned Multi-Modal Representations and Dense Trajectories for Emotional Analysis in Videos
When designing a video affective content analysis algorithm, one of the most important steps is the selection of discriminative features for the effective representation of video segments. The majority of existing affective content analysis methods either use low-level audio-visual features or generate handcrafted higher level representations based on these low-level features. We propose in this work to use deep learning methods, in particular convolutional neural networks (CNNs), in order to automatically learn and extract mid-level representations from raw data. To this end, we exploit the audio and visual modality of videos by employing Mel-Frequency Cepstral Coefficients (MFCC) and color values in the HSV color space. We also incorporate dense trajectory based motion features in order to further enhance the performance of the analysis. By means of multi-class support vector machines (SVMs) and fusion mechanisms, music video clips are classified into one of four affective categories representing the four quadrants of the Valence-Arousal (VA) space. Results obtained on a subset of the DEAP dataset show (1) that higher level representations perform better than low-level features, and (2) that incorporating motion information leads to a notable performance gain, independently from the chosen representation
A visualization tool for violent scenes detection
We present a browser-based visualization tool that allows users to explore movies and online videos based on the violence level of these videos. The system offers visualizations of annotations and results of the MediaEval 2012 Affect Task and can interactively download and analyze content from video hosting sites like YouTube
Heterogeneity of pollen food allergy syndrome in seven Southern European countries: The @IT.2020 multicenter study
Background Pollen food allergy syndrome (PFAS) is a frequently underdiagnosed disease due to diverse triggers, clinical presentations, and test results. This is especially relevant in geographic areas with a broad spectrum of pollen sensitization, such as Southern Europe. Objectives To elucidate similarities and differences of PFAS in nine Southern European centers and identify associated characteristics and unique markers of PFAS. Methods As part of the @IT.2020 Multicenter Study, 815 patients with seasonal allergic rhinitis (SAR), aged 10-60 years, were recruited in seven countries. They completed questionnaires regarding SAR, comorbidities, family history, and PFAS, and underwent skin prick testing (SPT) and serum IgE testing. Results Of the 815 patients, 167 (20.5%) reported PFAS reactions. Most commonly, eliciting foods were kiwi (58, 34.7%), peach (43, 25.7%), and melon (26, 15.6%). Reported reactions were mostly local (216/319, 67.7%), occurring within 5 min of contact with elicitors (209/319, 65.5%). Associated characteristics included positive IgE to at least one panallergen (profilin, PR-10, or nsLTP) (p = 0.007), maternal PFAS (OR: 3.716, p = 0.026), and asthma (OR: 1.752, p = 0.073). Between centers, heterogeneity in prevalence (Marseille: 7.5% vs. Rome: 41.4%, p < 0.001) and of clinical characteristics was apparent. Cypress played a limited role, with only 1/22 SPT mono-sensitized patients reporting a food reaction (p < 0.073). Conclusions PFAS is a frequent comorbidity in Southern European SAR patients. Significant heterogeneity of clinical characteristics in PFAS patients among the centers was observed and may be related to the different pollen sensitization patterns in each geographic area. IgE to panallergen(s), maternal PFAS, and asthma could be PFAS-associated characteristics
Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons
The Compact Muon Solenoid Collaboration is designing a new high-granularity
endcap calorimeter, HGCAL, to be installed later this decade. As part of this
development work, a prototype system was built, with an electromagnetic section
consisting of 14 double-sided structures, providing 28 sampling layers. Each
sampling layer has an hexagonal module, where a multipad large-area silicon
sensor is glued between an electronics circuit board and a metal baseplate. The
sensor pads of approximately 1 cm are wire-bonded to the circuit board and
are readout by custom integrated circuits. The prototype was extensively tested
with beams at CERN's Super Proton Synchrotron in 2018. Based on the data
collected with beams of positrons, with energies ranging from 20 to 300 GeV,
measurements of the energy resolution and linearity, the position and angular
resolutions, and the shower shapes are presented and compared to a detailed
Geant4 simulation
Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20300 GeV/c
The upgrade of the CMS experiment for the high luminosity operation of the
LHC comprises the replacement of the current endcap calorimeter by a high
granularity sampling calorimeter (HGCAL). The electromagnetic section of the
HGCAL is based on silicon sensors interspersed between lead and copper (or
copper tungsten) absorbers. The hadronic section uses layers of stainless steel
as an absorbing medium and silicon sensors as an active medium in the regions
of high radiation exposure, and scintillator tiles directly readout by silicon
photomultipliers in the remaining regions. As part of the development of the
detector and its readout electronic components, a section of a silicon-based
HGCAL prototype detector along with a section of the CALICE AHCAL prototype was
exposed to muons, electrons and charged pions in beam test experiments at the
H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology
as foreseen for the HGCAL but with much finer longitudinal segmentation. The
performance of the calorimeters in terms of energy response and resolution,
longitudinal and transverse shower profiles is studied using negatively charged
pions, and is compared to GEANT4 predictions. This is the first report
summarizing results of hadronic showers measured by the HGCAL prototype using
beam test data.Comment: To be submitted to JINS
HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4
In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2
In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics
FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1
We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics
- …