49,291 research outputs found

    Failure of Aileron Control Cable in Ajeet Aircraft MK-E-2015

    Get PDF
    The Aileron control cable of an Ajeet aircraft was found snapped . On ootical and scanning electron microscopic examination, it was found that the majority of the strands of the cable had thinned due to excessive contact wear with a oulley and subsequently failed in tension

    Symmetrical Peripheral Gangrene

    Get PDF
    info:eu-repo/semantics/publishedVersio

    HIV infection and domestic smoke exposure, but not human papillomavirus, are risk factors for esophageal squamous cell carcinoma in Zambia: a case-control study

    Get PDF
    (c) 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited

    Linear-time list recovery of high-rate expander codes

    Full text link
    We show that expander codes, when properly instantiated, are high-rate list recoverable codes with linear-time list recovery algorithms. List recoverable codes have been useful recently in constructing efficiently list-decodable codes, as well as explicit constructions of matrices for compressive sensing and group testing. Previous list recoverable codes with linear-time decoding algorithms have all had rate at most 1/2; in contrast, our codes can have rate 1ϵ1 - \epsilon for any ϵ>0\epsilon > 0. We can plug our high-rate codes into a construction of Meir (2014) to obtain linear-time list recoverable codes of arbitrary rates, which approach the optimal trade-off between the number of non-trivial lists provided and the rate of the code. While list-recovery is interesting on its own, our primary motivation is applications to list-decoding. A slight strengthening of our result would implies linear-time and optimally list-decodable codes for all rates, and our work is a step in the direction of solving this important problem

    Coreness of Cooperative Games with Truncated Submodular Profit Functions

    Full text link
    Coreness represents solution concepts related to core in cooperative games, which captures the stability of players. Motivated by the scale effect in social networks, economics and other scenario, we study the coreness of cooperative game with truncated submodular profit functions. Specifically, the profit function f()f(\cdot) is defined by a truncation of a submodular function σ()\sigma(\cdot): f()=σ()f(\cdot)=\sigma(\cdot) if σ()η\sigma(\cdot)\geq\eta and f()=0f(\cdot)=0 otherwise, where η\eta is a given threshold. In this paper, we study the core and three core-related concepts of truncated submodular profit cooperative game. We first prove that whether core is empty can be decided in polynomial time and an allocation in core also can be found in polynomial time when core is not empty. When core is empty, we show hardness results and approximation algorithms for computing other core-related concepts including relative least-core value, absolute least-core value and least average dissatisfaction value
    corecore