3 research outputs found

    Elucidating the Structure and Regulatory Interactions of the HOTAIR Non-Coding RNA and the Bacterial RNase P. Holoenzyme

    Get PDF
    RNA structures and RNA-protein interactions are studied as potential drug targets, biomarkers in cancer, and can be administered as vaccines. The cancer associated HOTAIR (HOX transcript antisense RNA) exists in higher vertebrates and interacts with chromatin remodeling enzymes. We examined the thermodynamic folding properties and structural propensity of the exonic regions of HOTAIR using biophysical methods and NMR spectroscopy. Different exons of HOTAIR contain variable degrees of structural heterogeneity. We identify one exonic region, exon 4, that adopts a stable and compact fold under low magnesium concentrations. Close agreement of NMR spectroscopy and chemical probing confirm conserved base pair interactions within helix 10 of exon 4 of the human HOTAIR long non-coding RNA (lncRNA). Unlike HOTAIR, the ribonuclease P (RNase P) exists in bacteria, archaea and eukarya. RNase P is a universal RNA-protein endonuclease that catalyzes 5′ precursor-tRNA (ptRNA) processing. Protein concentration and temperature dependent NMR studies were performed on a thermostable RNase P protein from Thermatoga maritima to understand its oligomerization properties. The identification of a monomeric P protein conformer from NMR relaxation data and chemical shift information provided new insight into the conformational dynamics of the P protein. Taken together, local structural changes of the P protein and the 5′ leader RNA facilitate optimal substrate alignment and catalytic activation of the RNase P holoenzyme. As RNase P is an essential enzyme in life, knowledge of the structural differences between pathogenic bacterial and human RNase P may help in the development of new antibiotic therapeutics that target RNase P. The enzyme activity of Mycobacterium tuberculosis RNase P was examined through 32P radioactivity assays, and multidimensional 2D/3D NMR spectroscopy was implemented to study the solution structure of the M. tuberculosis RNase P protein. A comparative analysis of the pathogenic and non-pathogenic RNase P proteins brings important structural insight into the development of antibiotics that target tuberculosis RNase P

    Dissecting Monomer-Dimer Equilibrium of an RNase P Protein Provides Insight Into the Synergistic Flexibility of 5’ Leader Pre-tRNA Recognition

    Get PDF
    Ribonuclease P (RNase P) is a universal RNA-protein endonuclease that catalyzes 5’ precursor-tRNA (ptRNA) processing. The RNase P RNA plays the catalytic role in ptRNA processing; however, the RNase P protein is required for catalysis in vivo and interacts with the 5’ leader sequence. A single P RNA and a P protein form the functional RNase P holoenzyme yet dimeric forms of bacterial RNase P can interact with non-tRNA substrates and influence bacterial cell growth. Oligomeric forms of the P protein can also occur in vitro and occlude the 5’ leader ptRNA binding interface, presenting a challenge in accurately defining the substrate recognition properties. To overcome this, concentration and temperature dependent NMR studies were performed on a thermostable RNase P protein from Thermatoga maritima. NMR relaxation (R1, R2), heteronuclear NOE, and diffusion ordered spectroscopy (DOSY) experiments were analyzed, identifying a monomeric species through the determination of the diffusion coefficients (D) and rotational correlation times (τc). Experimental diffusion coefficients and τc values for the predominant monomer (2.17 ± 0.36 * 10−10 m2/s, τc = 5.3 ns) or dimer (1.87 ± 0.40* 10−10 m2/s, τc = 9.7 ns) protein assemblies at 45°C correlate well with calculated diffusion coefficients derived from the crystallographic P protein structure (PDB 1NZ0). The identification of a monomeric P protein conformer from relaxation data and chemical shift information enabled us to gain novel insight into the structure of the P protein, highlighting a lack of structural convergence of the N-terminus (residues 1–14) in solution. We propose that the N-terminus of the bacterial P protein is partially disordered and adopts a stable conformation in the presence of RNA. In addition, we have determined the location of the 5’ leader RNA in solution and measured the affinity of the 5’ leader RNA–P protein interaction. We show that the monomer P protein interacts with RNA at the 5’ leader binding cleft that was previously identified using X-ray crystallography. Data support a model where N-terminal protein flexibility is stabilized by holoenzyme formation and helps to accommodate the 5’ leader region of ptRNA. Taken together, local structural changes of the P protein and the 5’ leader RNA provide a means to obtain optimal substrate alignment and activation of the RNase P holoenzyme

    Charge-Transfer or Excimeric State? Exploring the Nature of The Excited State in Cofacially Arrayed Polyfluorene Derivatives

    Get PDF
    It is well known that upon electronic excitation various π-stacked dimers readily exhibit excimer formation, facilitated by a perfect sandwich-like arrangement between the chromophores. However, it is unclear whether such a dimer is also capable of electron transfer upon excitation, if a strong electron-donating group is covalently attached. In this work, we probe the nature of the excited state in a series of cofacially arrayed polyfluorene derivatives with electron-rich aromatic donor attached via a methylene linker. Our studies show that in all cases excimer formation is energetically favorable, and promotion of a charge-transfer state in such systems is possible but requires a free energy for electron transfer far exceeding 1 V. These findings shed light on important design principles for molecular scaffolds capable of stabilizing both excimeric and charge-transfer states upon their excitation
    corecore