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Dissecting Monomer-Dimer
Equilibrium of an RNase P Protein
Provides Insight Into the Synergistic
Flexibility of 5’ Leader Pre-tRNA
Recognition
Danyun Zeng1, Ainur Abzhanova1, Benjamin P. Brown2,3 and Nicholas J. Reiter1*

1Department of Chemistry, Marquette University, Milwaukee, WI, United States, 2Chemical and Physical Biology Program,
Medical Scientist Training Program, Vanderbilt University, Nashville, TN, United States, 3Center for Structural Biology, Vanderbilt
University School of Medicine, Nashville, TN, United States

Ribonuclease P (RNase P) is a universal RNA-protein endonuclease that catalyzes 5’
precursor-tRNA (ptRNA) processing. The RNase P RNA plays the catalytic role in ptRNA
processing; however, the RNase P protein is required for catalysis in vivo and interactswith the
5’ leader sequence. A single P RNA and a P protein form the functional RNase P holoenzyme
yet dimeric forms of bacterial RNase P can interact with non-tRNA substrates and influence
bacterial cell growth. Oligomeric forms of the P protein can also occur in vitro and occlude the
5’ leader ptRNA binding interface, presenting a challenge in accurately defining the substrate
recognition properties. To overcome this, concentration and temperature dependent NMR
studies were performed on a thermostable RNase P protein from Thermatogamaritima. NMR
relaxation (R1, R2), heteronuclear NOE, and diffusion ordered spectroscopy (DOSY)
experiments were analyzed, identifying a monomeric species through the determination of
the diffusion coefficients (D) and rotational correlation times (τc). Experimental diffusion
coefficients and τc values for the predominant monomer (2.17 ± 0.36 * 10−10m2/s, τc �
5.3 ns) or dimer (1.87 ± 0.40* 10−10m2/s, τc � 9.7 ns) protein assemblies at 45°C correlate
well with calculated diffusion coefficients derived from the crystallographic P protein structure
(PDB 1NZ0). The identification of a monomeric P protein conformer from relaxation data and
chemical shift information enabled us to gain novel insight into the structure of the P protein,
highlighting a lack of structural convergence of the N-terminus (residues 1–14) in solution. We
propose that the N-terminus of the bacterial P protein is partially disordered and adopts a
stable conformation in the presence of RNA. In addition, we have determined the location of
the 5’ leader RNA in solution and measured the affinity of the 5’ leader RNA–P protein
interaction. We show that the monomer P protein interacts with RNA at the 5’ leader binding
cleft that was previously identified using X-ray crystallography. Data support a model where
N-terminal protein flexibility is stabilized by holoenzyme formation and helps to accommodate
the 5’ leader region of ptRNA. Taken together, local structural changes of the P protein and the
5’ leader RNA provide a means to obtain optimal substrate alignment and activation of the
RNase P holoenzyme.
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INTRODUCTION

Ribonuclease (RNase) P is an essential RNA processing enzyme
involved in the 5’ endonucleolytic cleavage of precursor transfer
RNA (ptRNA). It was one of the first identified examples of an
RNA-catalytic reaction and exists as a multi-turnover RNA-based
enzyme in bacteria, archaea, and eukaryotes (Guerrier-Takada
et al., 1983). In bacteria, a large catalytic RNA (P RNA) and a
small protein (P protein) component assemble as a holoenzyme
complex to recognize and cleave ptRNA. Synergistic molecular
recognition of ptRNA substrates by RNase P requires RNA-RNA
shape complementarity, intermolecular base pairing, and
stabilization of the 5’ leader single stranded RNA (ssRNA)
region by the P protein component (Kazantsev and Pace 2006;
Torres-Larios et al., 2006; Esakova and Krasilnikov 2010; Chan
et al., 2013; Mondragon 2013; Klemm et al., 2016; Zhang and
Ferré-DAmaré 2016; Gray and Gopalan 2020).

Structural studies of the RNase P holoenzyme with tRNA in
bacteria and eukaryotes show how the RNA-protein complex
functions as a single, monomeric assembly to selectively
recognize ptRNA targets (Reiter et al., 2010; Lan et al., 2018;
Wu et al., 2018). Interestingly, a cryo-EM structure of
Methanocaldococcus jannaschii (Mja) RNase P reveals the
components can be organized as a dimeric conformation for
efficient catalysis (Wan et al., 2019). In all cases, the structures
reveal conserved RNase P ribozyme features that are universal,
such as a dual T-loop P RNA tertiary motif that recognizes the
TΨC- D elbow region of tRNA and conserved P RNA nucleotides
that comprise the ribozyme active site (Krasilnikov et al., 2003;
Krasilnikov et al., 2004; Kazantsev et al., 2005; Torres-Larios et al.,
2005). The collective X-ray and Cryo-EM determined structures
suggest a largely pre-organized RNA active site, though a
conserved and bulged uridine has been proposed to undergo a
conserved dynamic motion that helps to position the substrate
and trigger catalytic activation (Kaye et al., 2002; Christian et al.,
2006; Reiter et al., 2010; Chen et al., 2011; Martin and Reiter 2017;
Lan et al., 2018). These conserved structural and dynamic
motions of the P RNA appear to be essential for accurate
substrate recognition and the formation of the metallo-
ribozyme active site.

In contrast to the P RNA, the RNase P protein has little or no
structural similarity across all three domains but its structure is
highly conserved in bacteria. The bacterial P protein is required
for in vivo activity, binds the catalytic P RNA with nanomolar
affinity utilizing its arginine-rich “RNR” motif, forms extensive
interactions with the 5’ leader ptRNA region, increases catalytic
efficiency by over two orders of magnitude, and facilitates
product release (Peck-Miller and Altman 1991; Tallsjo and
Kirsebom 1993; Talbot and Altman 1994; Crary et al., 1998;
Kurz et al., 1998; Kurz and Fierke 2002; Buck et al., 2005a; Buck
et al., 2005b; Sun et al., 2006; Koutmou et al., 2010b; Reiter et al.,
2010; Sun et al., 2010; Koutmou et al., 2011; Reiter et al., 2012; Lin
et al., 2016; Niland et al., 2017). The bacterial P protein is a highly
stable, rigid scaffold that bind and stabilizes the P RNA and serves
as a unique binding cleft for ssRNA. However, the bacterial P
protein also contains some intrinsically disordered regions,
especially within its N-terminus (Kirsebom 2007). This

N-terminus (residues 1–21) plays a critical role in binding the
P RNA as part of the holoenzyme complex and in optimally
aligning the 5’ leader ptRNA substrate. We sought to better
understand the structure and flexibility of the N-terminus of
the P protein as well as define the 5’ leader RNA binding
interaction using solution NMR spectroscopy.

High-resolution crystal structures and biochemical studies of
the bacterial RNase P protein by itself have provided some insight
into the ssRNA 5’ leader binding site, though no structure of an
isolated P protein-5’ leader RNA complex has been determined to
date (Stams et al., 1998; Spitzfaden et al., 2000; Kazantsev et al.,
2003; Henkels et al., 2007; Ha et al., 2018). In addition, much less
is known about how P protein flexibility contributes to 5’ leader
binding and catalytic activation. We chose to explore the solution
structure, protein flexibility, and 5’ leader binding properties of
the RNase P protein from Thermotoga maritima because
extensive structure, biochemical analyses, and small molecule
screening studies have been performed on this system (Paul et al.,
2001; Krivenko et al., 2002; Buck et al., 2005a; Torres-Larios et al.,
2005; Reiter et al., 2010; Reiter et al., 2012;Madrigal-Carrillo et al.,
2019). The high-resolution structure of the Thermotoga maritima
RNase P protein, hence termed P protein, crystallized as a
tetramer and its oligomeric state occluded the 5’ leader
binding through lattice contacts at the P protein’s N-terminus
(Kazantsev et al., 2003). This propensity towards oligomerization
makes structural analysis of the 5’ leader- P protein interface
recalcitrant and intractable to crystallographic methods.

Here, we describe an NMR-based strategy to overcome
oligomerization of the P protein from Thermotoga maritima
and directly monitor two protein conformers that coexist in
solution. The identification of an NMR-dervied monomeric
model emphasizes the lack of structure within the N-terminus
and allowed us to define the 5’ leader RNA binding properties of
the bacterial P protein.

MATERIALS AND METHODS

Sample Preparation
The 15N, 13C-labeled T. maritima RNase P protein sample was
prepared following the previous protocol (Zeng et al., 2018). A
pGEX4Ta vector containing the rnpA gene from T. maritima and
an N-terminal glutathione S-transferase (GST) fusion protein was
transformed and expressed in the BL21 Gold Escherichia coli cell
strain and cultured in M9 minimal media at 303 K supplemented
with 15N ammonium chloride and/or 13C glucose. After lysis
sonication in the presence of cOmplete™ protease inhibitor
cocktail (Roche), lysate was separated by centrifugation
(28,000 g), filtered, and treated with 800 NIH units of
thrombin per 40 ml to remove the GST tag from RNase P
protein. A denaturation−renaturation purification strategy was
applied (Paul et al., 2001; Krivenko et al., 2002; Buck et al., 2005a;
Buck et al., 2005b; Reiter et al., 2012). The thrombin-treated lysate
was combined with denaturation buffer (50 mM Tris-HCl pH7.5,
4 mM EDTA, 8 M urea) to a final concentration of 5 M urea, and
was subject to 15S cation exchange chromatography. Fractions
containing the denatured protein were subsequently dialyzed
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against refolding buffer (50 mMTris-HCl pH 7.5, 0.2 mMEDTA,
1 M NaCl) for 1–2 days, upon which the sample was diluted and
subject to a second 15S cation exchange column under the
identical condition excluding urea. Purified 15N, 13C-labeled
RNase P protein fractions were collected, concentrated, and
dialyzed against a buffer of 50 mM Tris-HCl pH 7.5,
0.2 mM EDTA.

NMR Spectroscopy
All NMR experiments were conducted using either low (153 μM)
or high (466 μM) 15N, 13C RNase P protein concentrations in
20 mM sodium phosphate pH 6.0, 80 mM NaCl, 50 μM 4,
4-dimethyl-4-silapentane-sulfonate (DSS) at 318 K with 10%
(v/v) D2O in a 3 mm Norell® select series NMR tube. NMR
spectra were acquired on Bruker Avance-III 600 and 800 MHz
and 900 MHz spectrometers, equipped with cryogenic probes, as
well as Varian VNMRS 600 and 800 MHz spectrometer equipped
with a cryogenic probe. NMR spectra were processed with
Topspin 3.5.7 (Bruker Inc.) and NMRPipe (Delaglio et al., 1995),
and analyzed with NMRViewJ (One Moon Scientific, Inc.) and
CARA (Keller 2004). 1H chemical shifts were referenced with
respect to internal DSS, and 13C and 15N chemical shifts were
referenced indirectly using nuclei-specific gyromagnetic ratios
(Wishart et al., 1995).

NMR Assignments of the P Protein
Backbone According to Different
Concentrations and Temperatures
NMR chemical shift assignments of the protein backbone were
determined on separate samples with protein concentrations of 466
and 153 μM, respectively. At the higher protein concentration,
backbone assignments were derived from 1H, 15N-heteronuclear
single quantum coherence (HSQC) and a set of traditional triple-
resonance experiments, including HNCO, HNCA, HN(CO)CA,
HNCACB, CBCA(CO)NH, and HN(CA)CO. In addition,
backbone and side-chain assignments were carried out using a
three-dimensional 15N-NOESY-HSQC experiment (120 ms
mixing time). At the lower protein concentration, backbone
assignments were confirmed with 1H, 15N-HSQC, HNCO,
HNCA, and HNCACB, comparing and referencing to the
assignments of the higher concentration sample. The chemical
shift assignments for the 466 μM and the 153 μM sample were
deposited to the biological magnetic resonance bank (BMRB) as
accession numbers 27307 and 51021, respectively. To investigate
the temperature dependence of the backbone assignments of P
protein (153 μM), a set of 1H, 15N-HSQC spectra were acquired
with identical parameters at 35 (308), 45 (318), 55 (328), and 65°C
(338 K). Additional parameters and data processing, including
window function, base-line correction, and linear prediction
were identical for all 1H, 15N-HSQC spectra.

DiffusionMeasurements of RNase P Protein
Two 13C/15N-labeled protein samples with concentrations of
153 and 466 μM were prepared for high-resolution DOSY
(diffusion-ordered NMR spectroscopy) experiments. 2D
DOSY-1H, 15N-HSQC experiments were performed on a

Varian VNMRS 800 MHz spectrometer with a diffusion delay
(Δ) of 70 ms and gradient width (δ) of 3 ms at 318 K. Six different
gradient strengths (0.9, 9.7, 18.6, 27.4, 36.2, and 45.1 Gauss/cm)
were used to measure diffusion rate of the sample with higher
concentration; while 8 gradient strengths (0.88, 7.24, 13.6, 20.0,
26.3, 32.7, 39.1, and 45.4 Gauss/cm) were applied to the low
concentration sample. Each experiment was acquired with a data
matrix of 168 (t1,

15N) × 2048 (t2,
1H) complex points and 64

scans. NMRPipe and NMRViewJ were used for data processing
and analysis, respectively. The exact centers of the cross peaks for
the selected resonances were identified and the fitting of the
results and error were propagated in the analysis of signal decay
curves. Reference diffusion coefficients for the RNase P
monomer, dimer, and tetramer species were calculated from
the high-resolution crystal structure (PDB: 1NZ0) using
HYDROPRO and HYDRONMR (García de la Torre et al.,
2000; Ortega et al., 2011). Molecule A, A/C, and A-D of PDB
1NZ0 were used for simulations of the monomer, dimer, and
tetramer, respectively.

Measurement of Relaxation Parameters
Relaxation parameters were measured at 318 K of the 466 μMP
protein on a Bruker Avance-III 800 MHz spectrometer. For R1,
five relaxation time points were collected at 100, 200, 400, 600,
and 1,000 ms. For R2, five relaxation time points were collected at
17, 34, 51, 85, and 119 ms. For R1 and R2 measurements, a recycle
delay of 1 s was used between transitions. Errors were estimated
by duplicate measurements using the shortest and longest
relaxation time. For heteronuclear NOE measurements, the
steady-state 1H saturation time was 5 s, a recycle delay of 5 s
was implemented in the reference experiment, and both reference
and NOEmeasurements were repeated in duplicate. All spectra of
relaxation measurements were collected with the data matrix of
300 (t1,

15N) × 1,024 (t2,
1H) points and 32 scans. NMRPipe was

used for data processing and data were evaluated using the rate
analysis module of NMRViewJ (Johnson and Blevins 1994;
Delaglio et al., 1995). To estimate rotational correlation time
from R1 and R2 values, calculation were made by performing Eq.
1 (Kay et al., 1989):

τc ≈
1

4πνN

�������
6
R2

R1
− 7

√
(1)

where νN is the 15N resonance frequency in Hz.

T. maritima RNase P Model Prediction
Based on NMR Chemical Shifts
Two sets of NMR chemical shifts were extracted from the high
and low protein concentration samples (BMRB #27307 and
#51021) and models were generated using chemical-shift (CS-)
Rosetta predictive modeling as described elsewhere (Shen et al.,
2008; Shen and Bax 2013). The identical number of chemical shift
assignments from the “low” and “high” concentration samples
were imported to the CS-Rosetta web server to assess predictive
modeling results in a direct, comparative manner. NMR chemical
shift information was the only experimental data incorporated

Frontiers in Molecular Biosciences | www.frontiersin.org September 2021 | Volume 8 | Article 7302743

Zeng et al. NMR of RNase P Protein-RNA Interactions



into model prediction calculations. A total of 3,000 structural
models were generated for each set (low and high P protein
concentration) and the top 10 best scoring models were selected.
Visualization and analysis of predictive models were performed
in Molmol (Koradi et al., 1996).

The Interaction Between RNase P Protein
and 5’ Leader RNA
NMR titrations investigated the binding process between the
RNase P protein and the ptRNA 5’ leader. A 7-mer 5’ leader
sequence of ptRNA (AAGGCGU) was purchased from
Dharmacon Co. with purity >95%. Both protein and ptRNA
leader were pre-equilibrated in the identical NMR buffer as
described above. During titrations, the leader RNA was
gradually added with increased molar ratios of 0.2:1, 0.4:1,
1:1, and 2:1 to the 153 μM protein sample. At each molar ratio,
a 1H, 15N-HSQC spectrum was acquired at 318 K. All data were
processed by NMRpipe and analyzed by NMRviewJ. The
analysis of amide chemical shift changes (Δδ) were
calculated following Eq. 2 (Schumann et al., 2007; Collier
et al., 2014):

Δδ(ppm) � �����������������������
Δδ(1H)2 + (0.152Δδ(15N))2

√
(2)

Δδs of the peaks at the highest leader RNA concentration (5’
leader/protein molar ratio � 2:1) were used for chemical shift
perturbation (CSP) analysis. Dissociation constants (KD) for each
shifting peak were calculated by fitting the data to Eq. 3:

Δδ(ppm) � Δmax

(KD + [L] + [P]) −
�����������������������
(KD + [L] + [P])2 − 4 [P][L]

√
2[P]

(3)

where Δδ(ppm) is the amide chemical shift changes, Δmax the
maximum amide chemical shift changes, [P] and [L] the protein
and ligand concentrations, respectively. Only defined monomeric
chemical shift assignments were used for the KD calculation.
However, the CSP analysis included monomer-only peaks and
identified monomer-dimer assigned peaks. In the 153 μMP
protein sample, dimer-only peaks undergo chemical shift
changes upon RNA binding but were too weak and unreliable
to be included in the analysis.

Molecular Docking of RNase P Protein and
5’ tRNA Leader
HADDOCK was used to predict the structure of the RNase P
protein-5’ ptRNA leader complex, based on the CSP results of
NMR titrations (Dominguez et al., 2003). Certain residues which
have Δδs larger than Δδaverage + STDΔδ were set as active residues,
while amides having Δδs between Δδaverage and Δδaverage + STDΔδ
were set as passive residues. The initial structure of the P protein
was the representative structure from the CS-Rosetta calculated
ensemble that incorporated the NMR peak assignments at low
protein concentration. The initial model of the 7-mer ptRNA
leader was generated in Coot (Emsley and Cowtan 2004). The

docking calculations were performed on the HADDOCK web
server; generating 127 predicted models using standard
HADDOCK settings.

RESULTS

Concentration Dependent Equilibrium of T.
maritima RNase P Protein in Solution
The functional T. maritima ribonuclease P holoenzyme
structure contains single RNA (ribozyme) and protein
components, yet the large 110 kDa P RNA-only crystallizes
as a dimer and the small 14 kDa P protein-only crystal
structure (PDB-1NZ0) contains two dimers within its
asymmetric unit (Figure 1) (Paul et al., 2001; Kazantsev
et al., 2003; Torres-Larios et al., 2005; Reiter et al., 2012).
The P protein dimer interface in the crystal structure obscures
the 5’ leader RNA binding track (Kazantsev et al., 2003) and
this is problematic in characterizing the 5’ leader pre-tRNA
substrate-protein interaction. Preliminary NMR experiments
reveal that highly purified T. maritima RNase P protein, hence
termed P protein, persists as a dimer at 25°C but is a
heterogeneous species in solution. Thus, oligomerization is
not merely an artifact of crystallization. To define the NMR
assignments of an RNA binding competent P protein,
1H, 15N-HSQC spectra at various temperatures and on samples
containing protein concentrations in the range of 153–466 μM
were collected and analyzed. A series of triple-resonance
experiments at both high (466 μM) and low (153 μM)
protein concentrations were also collected and analyzed at
45°C. At P protein concentrations of 153 and 466 μM, there
are always 2 conformations in solution (Figure 2,
Supplementary Figure S1). The analysis of various
concentration and temperature spectra enabled the
identification and assignment of two sets of amide peaks that
correspond to two conformations in solution (BMRB #27307
and #51021).

When comparing P protein low (153 μM) and high (466 μM)
concentrations at 45°C, we observed overall peak intensity changes
between the two conformations depending upon the protein
concentrations (Figure 2). This suggests a concentration-
dependent shift in the equilibrium of the two species in solution.
Between 35 to 65°C, similar temperature dependent chemical shifts
were observed for both samples but no significant changes occurred
in the relative peak intensities for the two conformations
(Supplementary Figure S2). This suggests that both
conformations are stable over a wide temperature range and that
the oligomeric equilibrium of the P protein is concentration
dependent and temperature-independent in the range of 35–65°C.

We report high confidence backbone assignments at high
(96.5% amides, 99.1% for all Cα and Cβ, and 97.4% C’
resonances) and low P protein concentrations (93.0% amides,
90.6% for Cα, 70.7% for Cβ, and 87.2% C’ resonances). Nearly 50%
of all residues have different chemical shift assignments in two
conformations of the 1H, 15N-HSQC, thus facilitating the
accurate analysis of the distinct conformations of the P
protein (Supplementary Table S1, BMRB #27307 and #51021).
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Identification of a Monomer and Dimer P
Protein

To define oligomerization status of the distinct conformations,
2D-DOSY spectra were acquired at low (153 μM) and high
(466 μM) P protein concentrations (Table 1). Analysis was
performed on 48 residues that contained distinct chemical
shifts for the two conformations in the 1H, 15N-HSQC spectra.
Peak intensities of the dominant signal at low or high P protein
concentrations were identified and selected for signal decay curve
analyses from DOSY experiments. The average diffusion
coefficients at 45°C were determined from the analysis of the
selected peak intensities against gradient field strengths (Table 1).
Experimental diffusion coefficient values of the low (153 μM)
concentration conformer (Dlow � (2.17 ± 0.36)*10–10 m2/s) and
the high (466 μM) concentration conformer (Dhigh � (1.87 ± 0.40)

*10–10 m2/s) are consistent with HYDROPRO and HYDRONMR
software-simulated diffusion coefficients of a monomer
(D ∼ 1.96 *10–10 m2/s) and dimer (D ∼ 1.54 *10–10 m2/s)
P protein conformation (Table 1). The calculated, reference
diffusion coefficients from HYDROPRO and HYDRONMR were
derived from the high-resolution crystal structure PDB-1NZ0. A
value difference of 0.3 for the experimental diffusion data (D ∼
2.17 vs. 1.87) compared to the 0.42 value difference in the
calculated values (D ∼ 1.96 vs. 1.54) reflect the fact that both the
low and high concentration samples contain mixed monomer/dimer
populations. While there is no evidence of higher order
oligomerization, the monomeric form predominates at low protein
concentration and the dimeric form primarily occurs at higher
concentrations. The resolution and calculated error in the NMR-
derived diffusion coefficients likely reflect the mixed populations
present at both concentrations. Nonetheless, this comparative

FIGURE 1 | Crystal structures of T. maritima RNase P components. (A) Crystal structure of the holoenzyme in complex with tRNA (PDB 3Q1Q). RNase P RNA
component is shown in light blue, the P protein component in green, and tRNA in light pink. The enzyme active site is denoted by the location of a catalytic magnesium ion
(magenta sphere). RNAs are represented as loops (backbones) and sticks (nucleobases) and the P protein is represented as cylinders (α-helix) and arrows (β-sheets).
Protein residues 14–17 are highlighted in red to indicate the location of the dimerization interface of the P protein alone (PDB 1NZ0). Residues 8–21 play a critical
role in binding the P RNA as part of the holoenzyme complex and in optimally aligning the 5’ leader ptRNA substrate. (B) 1.2 Å resolution crystal structure of the P protein
shown as a dimer, with molecules A and C (PDB 1NZ0). Protein residues 14–17 are highlighted in red and the N-termini in colored grey. Residues 1–15 are oriented
differently between A and B.

FIGURE 2 | Identification of distinct chemical shift assignments at 466 and 153 μM P protein concentrations. Overlay of 1H, 15N-HSQC spectra acquired on
samples containing 466 μM (red) and 153 μM (blue) P protein concentrations under identical buffer conditions at 318K. Representative regions of the spectra are shown,
revealing slow exchange between monomer and dimer conformers in solution. Amino acid single letter code and T. maritimaRNase P protein numbering corresponds to
UniProtKB–Q9X1H4.
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diffusion coefficient analysis identifies that the assigned resonances in
the low (153 μM) and high (466 μM) concentration P protein samples
correspond primarily to the monomeric and dimeric species,
respectively.

Verification of the identified monomer/dimer species was also
determined through the analysis of the R2/R1 relaxation data. Despite
heterogeneous sample conditions, 48 chemical shifts were extracted
from two sets of residues in the spectra. One set of analyzed peaks was
representative of the dominant conformer at the high concentration
(466 μM) and the other set of peaks was representative of a minor

conformer that is also present at 466 μMP protein. The observed
minor conformer chemical shifts at 466 μM are identical to the
dominant conformer at 153 μMP protein concentration. R1 and
R2 rates were determined for the selected residues of the minor
and dominant P protein conformers and their average R2/R1 ratios
identified as 5.95 and 17.04, respectively, (Figures 3A–C). R2 values
were considerably higher for peaks arising from the dominant
conformer in comparison to peaks from the minor conformer
(Figures 3A,C). In addition, rotational correlation times (τc) (Kay
et al., 1989) were determined from R2/R1 ratio values, revealing τc,low
and τc,high values of approximately 5.3 and 9.7 ns, respectively. These
parameters support a monomer–dimer equilibriummodel, where the
monomer conformer (τc, monomer ∼ 5.3 ns) predominates at ∼150 μM
and the dimer species (τc, dimer ∼9.7 ns) predominates at higher P
protein concentrations. The estimated τc values are substantially
smaller than a typical 14 or 28 kDa idealized spherical protein at
25°C, but are consistent with the estimated empirical range of
correlation times at 45°C (http://nickanthis.com/tools/tau). Thus,
analysis of two independent NMR methodologies (DOSY and NMR
relaxation) both validate that monomer and dimer P protein
assembles coexist in solution. The monomeric conformation
predominates at 153 μMP protein concentrations whereas the
dimer species predominates at higher (466 μMP protein)
concentrations.

Predictive Modeling of the 2 Conformations
The two sets of backbone NMR assignments (HN, Cα, and C’)
based upon BMRB entries #27307 and #51021 were input into CS-
Rosetta web server to generate models of the monomer and dimer
forms of the P protein in solution. To inspect the structural
differences caused only by chemical shifts, the same numbers of
chemical shifts from exactly the same assigned resonances were
implemented for CS-Rosetta calculations. The ensemble models
converge well and reflect the dimeric and monomeric forms of the
P protein in solution (Figures 4A,B, respectively). All ensembles
include the 10 lowest-energy models and both sets of predicted
structures contain near identical backbone folds that are consistentwith
the crystal structure (PDB: 1NZ0). However, whereas the backbone
RMSD of residues 24–117 of the monomer and dimer species
compared to PDB-1NZ0 are 0.97�A and 1.19 Å, respectively, both
models show a higher degree of flexibility at the N-terminus (residues
1–23). Both monomeric and dimeric conformers exhibit a lack of
structural convergence within the first 23 residues at N terminal of the
P protein, with a higher degree of structural variability observed in the
monomeric-derived ensemble (Figure 4B).

TABLE 1 | Experimental and calculated diffusion coefficients (D, *10-10 m2/s) of T. maritima RNase P protein.

Method Conformation

DOSY 153 μM concentration 466 μM concentration

2.17 ± 0.36 1.87 ± 0.40

Monomer Dimer Tetramer

HYDROPRO 1.96 1.55 1.08

HYDRONMR 1.93 1.53 1.10

FIGURE 3 | NMR relaxation analysis (A) R2/R1 ratios, (B) R1 and (C) R2

of distinct T. maritima RNase P protein conformers. The dominant P protein
conformer at 466 μM is shown in filled circles, rectangles, and triangles in the
three plots, respectively; while the minor conformer is presented as the
open/white filled symbols. The R2/R1 ratio (A), as well as individual R1 (B) and
R2 (C) relaxation experiments were performed on a 466 uM P protein sample
at 318K. For each data set, errors represent multiple 15N T2 and T1 relaxation
experiments in addition to the uncertainty of the exponential fit. The average
R1, R2, and R2/R1 ratios of the dominant and minor P protein conformations
are indicated as solid and dashed lines, respectively.
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A comparison of NOEs within the N-terminus (residues 8–12,
18–22) and a defined α-helical region (residues 59–68) reflect the
extent or lack of structural convergence observed in CS-Rosetta
models (Supplementary Figure S3). Poorly ordered regions at
the N-terminus (residues 8–12) reveal only a few HN-HN (i,i+1)
NOEs, a partially structured region that contains α-helical
character (residues 18–22, α1 helix) reveals sequential (i, i+1)
and some medium range NOEs, and a highly ordered region
(residues 59–68, α3 helix) shows HN-HN (i, i+2), Hα-HN (i, i+3),
and Hα-HN (i ,i+4) medium and long range NOE connectivities.
The representative NOEs identified in 15N NOESY-HSQC
spectrum highlight the lack of structural convergence in the
N-terminus observed in the CS-Rosetta model.

Thus, comparative modeling and analysis of NOE data reveal
that the N-terminal P protein is more flexible than other regions
of the P protein. The CS-Rosetta data also suggest that the N-
terminal region of the monomer conformation is more flexible
than the dimer conformer despite using the exact same number of
chemical shifts from the same assigned resonances. The alpha1
helix (α1) extends from residue 14–23 in the dimeric assigned CS-
Rosetta ensemble with a backbone RMSD of 0.38 �A relative to
PDB 1NZ0 (Figure 4B). This implies that the dimerization
interface in solution is similar to the X-ray structure (PDB
1NZ0) (Figure 1B, Supplementary Figures S4, S5). In
contrast, the monomer assigned CS-Rosetta models reveals a
truncated α1 helix (residues 17–23) that appears intrinsically
disordered (RMSD ∼1.56 �A) relative to 1NZ0. Taken together,
this NMR-based data supports a structural mechanism whereby
the N-terminal region (residues 1–12) becomes stabilized by the P
RNA in the RNase P holoenzyme crystal structure (Reiter et al.,
2010) and the transient structure of the N-terminal helix
(residues 13–23) helps to optimally align the 5’ leader ssRNA
substrate region (Niranjanakumari et al., 1998; Zahler et al., 2003;
Buck et al., 2005a; Buck et al., 2005b; Sun et al., 2006;

Niranjanakumari et al., 2007; Koutmou et al., 2010b; Reiter
et al., 2012; Lin et al., 2016; Niland et al., 2017).

The Binding Mode of P Protein and 5’
Pre-tRNA Leader
To understand the mechanism of RNase P holoenzyme activation
and ptRNA cleavage, it is essential to study the structure and
binding interaction between RNase P protein and 5’ ptRNA
leader. We chose to work with RNase P from Thermotoga
maritima because extensive structure, biochemical analyses,
and small molecule screening studies have been performed on
the RNase P holoenzyme (Paul et al., 2001; Buck et al., 2005a;
Torres-Larios et al., 2005; Reiter et al., 2010; Reiter et al., 2012;
Madrigal-Carrillo et al., 2019). We determined that the
functionally relevant P protein monomer predominates at low
(153 μM) concentrations, enabling NMR titrations to probe the
binding interactions of the P protein and 5’ leader RNA.
Chemical shift perturbation (CSP) analysis was performed
when the 5’ leader RNA (5′- AAGGCGU-3′) was titrated into
the P protein to a ratio of 2:1. Higher RNA:protein titration ratios
were attempted >4:1 yet were followed by rapid sample
precipitation, prohibiting the accurate collection of reliable
chemical shift information. Nonetheless, CSP analysis of the
protein-RNA titration was monitored via 1H, 15N-HSQC
experiments, focusing on 57 assignments attributed to the
monomer, 28 peaks corresponding to both monomer and
dimer conformers, and 8 resonances attributed solely to the
dimer species (Supplementary Figure S6). Dimer-identified
peaks are minor at the 153 μMP protein concentrations
(Figure 2); yet detectable minor chemical shift differences
(Δδ) upon ligand binding were observed for both monomer
and dimer species (Supplementary Figure S7). Specifically,
residues Q28 and F82 represent dimer peaks that were shifted

FIGURE 4 | CS-Rosetta calculated ensembles of T. maritima P protein at high (466 μM) and low (153 μM) concentrations. The same number of chemical shifts
arising from the same residues (distributed equally) for identified monomer and dimer conformations were incorporated into CS-Rosetta calculations. The top 10 scored
models of each conformation are overlaid in A (at 466 μM) and B (at 153 μM). In both ensembles, 10 structures models are superposed from residue 24 to 117, with
backbone regions colored olive (A) and light pink (B). The N-terminus region (residues 1–23) are presented as loop (gray coil-coiled) and ribbons (red helix)
segments. The C-terminus (C) is labeled and a curved line of the N-terminus (N) is included to highlight the predicted amplitudes and flexibility observed in the dimer (A)
and monomer (B) derived ensembles.
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upon RNA titration at 153 μMP protein concentrations. Both
Q28 and F82 HN resonances are structurally accessible to bind
RNA in the monomer and dimer conformers yet only Q28 exists
at a functionally relevant RNA binding interface. While it is
possible that further RNA addition may shift the equilibrium
from a dimer species towards the monomeric conformation, it is
unclear from the available NMR data whether RNA binding
substantially alters the dimer-monomer conformational
equilibrium.

Nonetheless, the magnitude of changes in peak positions
induced by RNA binding correlate to weak protein-RNA
interactions that occur in fast exchange on the NMR timescale
(Figure 5A). The dissociation constant (KD) was determined by
examining the individual change in peak positions (Δδs) against
ligand concentrations for residues attributed to only the
monomer P protein. 16 data sets were fitted and then
combined for a global fitting KD determination, yielding an
overall apparent KD

global of 47.2 ± 14.0 μM (Figure 5B).
Significant chemical shifts were observed exclusively in the
identified monomer assignments (11 residues, S4, R8, G24,
L27, V34, V49, R73, 82F, V85, I87, and G117), where
significant shifts imply Δδ ≥ Δδaverage + STDΔδ (Figure 5C).

Nearly all mapped protein residues undergo fast exchange
kinetics upon RNA binding except for amide residues of S26
and V99, which are selectively line broadened and undergo
millisecond exchange kinetics. The observed different binding
modes may be due to the 5’ leader RNA interactions with the
monomer and a heterogeneous monomer-dimer species, thus
complicating interpretation. For this reason, only residues that
have defined monomeric chemical shift assignments and
undergoing fast exchange were included in the dissociation
constant calculation. The distributed RNA binding P protein
residues were mapped on one of the CS-Rosetta derived model
and, as expected, residues with the largest changes in peak
positions are located across the β-sheet binding cleft
(Figure 5D). These NMR titration experiments validate the 5’
leader-binding interface previously identified in the T. maritima
RNase P holoenzyme-tRNA complex (Reiter et al., 2010).

Based on CSP results, HADDOCK was performed to generate
an ensemble of the P protein monomer-5’ pre-tRNA leader
interaction in solution (Figures 5D,E). Chemical shift
perturbation results were included as ambiguous restraints
between the individual P protein residues of the 5’ leader
RNA. Monomeric P protein residues exhibiting peak changes

FIGURE 5 | NMR mapping and modeling of the P protein-5’ pre-tRNA leader interaction. (A) Representative chemical shift perturbations (CSP) corresponding to
RNA titrations to a 153 μM P protein sample. Overlay of 1H, 15N-HSQC spectra show the chemical shift changes due to RNA binding, where RNA-protein ratios are 0:1
(red), 0.2:1 (orange), 0.4:1 (purple), 1:1 (blue), and 2:1 (green). (B) Example curves included in global fitting of deriving dissociation constant of T. maritima P protein-5’
leader interaction (KD � 47.2 ± 14.0 μM, R2 � 0.983). (C) CSPmap of ligand-protein molar ratio at 2:1, with indicated chemical shift changes (Δδ) (y-axis) by residue
(x-axis). The dark blue line represents one standard deviation above the average chemical shift difference (Δδaverage + STDΔδ). The cyan line represents the average
chemical shift difference (Δδaverage). Schematic plot shows the P protein secondary structure (top). (D) The best scored HADDOCK model of the P protein-5’ leader
interaction in solution. The lowest energy NMR-derived CS-ROSETTA model (violet) is depicted as ribbons (helix) and arrows (β-sheets) and the 5’ leader RNA is shown
as a cartoon (orange backbone trace and green/blue nucleobases). Residues with significant CSP (Δδ ≥ Δδaverage + STDΔδ) are highlighted in dark blue, and residues with
large CSP (Δδaverage + STDΔδ ≥Δδ ≥ Δδaverage) are colored in cyan. The CS-Rosetta generatedmodel derived frommonomeric chemical shift data was used in HADDOCK
calculations to compare NMR-based data in solution to the available X-ray data (PDBs 1NZ0 and 3Q1R). (E) A structural overlay of the HADDOCK generated models
(protein/5’ leader, colored as violet/orange) in the context of the bacterial RNase P holoenzyme crystal structure, which emphasizes the P protein-5’ leader interface,
colored green/yellow, that is derived from electron density data (PDB 3Q1R). 4 HADDOCK models with the lowest energies were superposed with PDB 3Q1R. The
RNase P RNA and tRNA are colored light blue and pink, respectively, and the 5’ and 3’ ends of the leader RNAs are labeled.
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located near the central β-sheet cleft were selected for docking,
consistent with T. maritima RNase P structure and biochemical
studies (Reiter et al., 2010; Reiter et al., 2012). Models generated
were solely dependent upon CSP data and emphasize the
flexibility of the P protein in accommodating a broad array of
5’ leader RNA nucleotides.

DISCUSSION

Sample heterogeneity, oligomerization, and the identification of a
functionally relevant conformer represent long-standing
challenges in the analysis of biochemical data. Dimerization
and higher order oligomers of RNA binding proteins can
function as essential features for splicing regulation, post-
transcriptional processing, and RNA biogenesis, or they can
represent aberrant pathways prone to aggregation that can
dominate the pathology of a disease (Lagier-Tourenne et al.,
2010; Couthouis et al., 2011; Prusty et al., 2017; Montalbano et al.,
2020; Montemayor et al., 2020). In bacterial RNase P, the issue of
a functional dimeric holoenzyme has been extensively discussed
(Fang et al., 2001; Barrera et al., 2002; Barrera and Pan 2004; Buck
et al., 2005a; Niland et al., 2017), though it has been structurally
validated that the RNA-protein holoenzyme complex in bacteria
and eukaryotes function as single, monomeric assemblies to
perform ptRNA recognition and catalysis. The propensity for
dimer formation is apparent in some bacteria P RNA and P
protein crystal structures, potentially masking a functionally
relevant conformation in solution (Kazantsev et al., 2003;
Torres-Larios et al., 2005). Specifically, the oligomeric state of
the P protein crystal structures can block the 5’ leader RNA binding
interface, making it difficult to obtain atomic level insight into the
RNA binding interface of the bacterial RNase P holoenzyme.

Here, we developed an NMR-based method to overcome
oligomerization of the P protein from Thermotoga maritima
and investigated the RNA binding interface in solution. Diffusion
coefficient and NMR relaxation experiments independently validate
a concentration-dependent monomeric P protein in solution. In
addition, the determination of distinct chemical shift assignments for
the monomer and the dimer conformations indicate that monomer-
dimer equilibrium undergoes slow exchange kinetics on the NMR
timescale. A comparison of the CS-Rosetta predicted structures from
chemical shifts from the monomer show that the N-terminus of the
P protein has increased flexibility in the absence of RNA ligand or
dimer formation, with residues 14–17 no longer part of a stable helix
and lacking structural convergence. This conformational flexibility
within the N-terminus is consistent with previous NMR relaxation
studies of the P protein (Spitzfaden et al., 2000; Henkels et al., 2007).
This suggests that the N-terminus (residues 1–17) represents a
disordered region of the T. maritima P protein in the absence of
P RNA or the ptRNA substrate.

In addition, NMR-monitored titration of a short 7-mer 5’
leader RNA show that the largest changes in peak positions due to
RNA binding occur across the β-sheet binding cleft that
correspond to the 5’ leader binding site previously identified
via x-ray crystallography. Structure prediction of the P protein-5’
leader RNA complex based on experimental CSP-NMR analysis

indicate that complex formation is largely stabilized through
electrostatic interactions between electropositive amino acid
side chains and the RNA phosphate backbone (Figure 6).
Taken together, and in conjunction with previous structural
studies, these results support a model where flexibility of the
N-terminus and α1 helix of the P protein can become stabilized
through formation of a holoenzyme complex (Henkels et al.,
2007; Reiter et al., 2010; Reiter et al., 2012). This P protein
N-terminus flexibility may not only be important during
holoenzyme assembly and promoting optimal alignment of the
5’ leader of the pre-tRNA substrate, but may also contribute to
product release of the cleaved tRNA product.

Due to the large size of the functional enzyme and potential
sample heterogeneity in some RNase P systems, few solution
NMR studies exist of RNase P components (Schmitz and Tinoco
2000; Spitzfaden et al., 2000; Getz et al., 2007; Henkels et al., 2007;
Koutmou et al., 2010a; Zeng et al., 2018). Our NMR-based study
provides an avenue for dissecting the RNA interactions of a
distinguishable monomeric P protein in solution; however, there
are some limitations of this approach. Additional insight into the
conformational changes of the structure and P protein-5’ leader
interface could be gleaned through pH-titration experiments, the
addition of osmolytes, the alteration of salt concentrations, and
the application of high pressure NMR. All of these sample
optimization strategies could be effective in controlling the
oligomeric state of the P protein or RNase P holoenzyme, and
it is possible that the observed dimer interactions are unique to
the T. maritima P protein (Supplementary Figure S4, S5).
Nonetheless, the ability to distinguish between monomer and
dimer conformations demonstrates the utility of NMR and
provides an excellent starting point for additional sample
optimization, helping to further shift the equilibrium completely
towards a monomeric P protein conformation. Another limitation
of the present NMR study is that only amide chemical shift changes
were monitored in NMR relaxation studies and to map the RNA
binding site, yet it appears that protein side chain flexibility is

FIGURE 6 | Electrostatic binding interface of a P protein–5’ leader
complex in solution. The predicted structure is the best-scored model
calculated by HADDOCK. The 5’ leader (orange sticks) lies along the β-sheet
cleft of P protein (violet). Electrostatic interactions between positive
charged residues of the P protein (sticks, pink) are labeled and are positioned
close to the phosphate groups of the 5’ leader (yellow).
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critical to understand RNA binding specificity, with side chain
electrostatic stabilization occurring along the β-sheet binding cleft
and potential hydrophobic interactions with residues within the α1
helix. Protein side chain-RNA interactions through CSP analysis or
through intermolecular protein-RNA NOE experiments would
provide atomic-level insight into the potential nucleobase binding
specificity within the 5’ leader RNA region.

Through combined chemical shift perturbation analysis and
NMR-based structure prediction studies, we have illuminated the
N-terminal structural flexibility of a bacterial P protein in solution
and validated the 5’ leader RNA binding interface. Consistent with
previous structural and biochemical studies, we confirm that a series
of weak, electrostatic-based interactions along the β-sheet binding
cleft help to explain how the P protein accommodates different 5’
leader single stranded RNAs and can optimally align a variety of
RNA substrates. Dissecting conformational heterogeneity within the
N-terminus and monitoring RNA-side chain interactions of the T.
maritima P protein serve as key next steps towards understanding
how intrinsically disordered regions contribute to RNA binding
specificity and the activation of the RNase P holoenzyme.
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