33 research outputs found
Mammal distribution and trends in the threatened Ebo 'intact forest landscape', Cameroon
Intact forest landscapes (IFLs) are globally important for maintaining functional ecosystems. Ebo forest (~1400 km2) in Cameroon is one of the largest remaining IFLs in the Cross-Sanaga-Bioko coastal forest ecoregion and harbours several IUCN Red-Listed threatened mammal species. We evaluated the status, trends, and distribution of mammals â„ 0.5 kg in the Ebo forest over 12 years using guided recce and camera trap monitoring surveys, as well as local knowledge to inform future land use and conservation planning. Recce monitoring of seven taxa (blue duiker Philantomba monticola, chimpanzee Pan troglodytes, forest elephant Loxodonta cyclotis, putty-nosed monkey Cercopithecus nictitans, medium sized duikers Cephalophus spp., and red river hog Potamochoerus porcus) showed that some are stable or increasing. Indeed, our recent camera trap data confirmed breeding Gorilla gorilla (western gorilla) and elephant. Distribution models for chimpanzees and elephants showed that their populations are concentrated in the centre of the forest, away from human pressure. Some other species, however, including red colobus Piliocolobus preussi, leopard Panthera pardus, African golden cat Caracal aurata, and forest buffalo Syncerus caffer nanus are either close to extirpation or have been extirpated within living memory. We conclude that the Ebo intact forest landscape retains an important mammal community, despite no formal legal protection. Eboâs future is uncertain, with two commercial logging concessions announced by Cameroon in 2020 and later suspended in response to national and international pressure. It is crucial to maintain Eboâs integrity to maintain the biodiversity and function of this important part of the Cross-Sanaga-Bioko coastal forest ecoregion
Chimpanzee population structure in Cameroon and Nigeria is associated with habitat variation that may be lost under climate change
Background: The Nigeria-Cameroon chimpanzee (Pan troglodytes ellioti) is found in the Gulf of Guinea biodiversity hotspot located in western equatorial Africa. This subspecies is threatened by habitat fragmentation due to logging and agricultural development, hunting for the bushmeat trade, and possibly climate change. Although P. t. ellioti appears to be geographically separated from the neighboring central chimpanzee (P. t. troglodytes) by the Sanaga River, recent population genetics studies of chimpanzees from across this region suggest that additional factors may also be important in their separation. The main aims of this study were: 1) to model the distribution of suitable habitat for P. t. ellioti across Cameroon and Nigeria, and P. t. troglodytes in southern Cameroon, 2) to determine which environmental factors best predict their optimal habitats, and 3) to compare modeled niches and test for their levels of divergence from one another. A final aim of this study was to examine the ways that climate change might impact suitable chimpanzee habitat across the region under various scenarios. Results: Ecological niche models (ENMs) were created using the software package Maxent for the three populations of chimpanzees that have been inferred to exist in Cameroon and eastern Nigeria: (i) P. t. troglodytes in southern Cameroon, (ii) P. t. ellioti in northwestern Cameroon, and (iii) P. t. ellioti in central Cameroon. ENMs for each population were compared using the niche comparison test in ENMtools, which revealed complete niche divergence with very little geographic overlap of suitable habitat between populations. Conclusions: These findings suggest that a positive relationship may exist between environmental variation and the partitioning of genetic variation found in chimpanzees across this region. ENMs for each population were also projected under three different climate change scenarios for years 2020, 2050, and 2080. Suitable habitat of P. t. ellioti in northwest Cameroon / eastern Nigeria is expected to remain largely unchanged through 2080 in all considered scenarios. In contrast, P. t. ellioti in central Cameroon, which represents half of the population of this subspecies, is expected to experience drastic reductions in its ecotone habitat over the coming century
Using nonhuman culture in conservation requires careful and concerted action
Discussions of how animal culture can aid the conservation crisis are burgeoning. As scientists and conservationists working to protect endangered species, we call for reflection on how the culture concept may be applied in practice. Here, we discuss both the potential benefits and potential shortcomings of applying the animal culture concept, and propose a set of achievable milestones that will help guide and ensure its effective integration existing conservation frameworks, such as Adaptive Management cycles or Open Standards
Tropical field stations yield high conservation return on investment
Conservation funding is currently limited; costâeffective conservation solutions are essential. We suggest that the thousands of field stations worldwide can play key roles at the frontline of biodiversity conservation and have high intrinsic value. We assessed field stationsâ conservation return on investment and explored the impact of COVIDâ19. We surveyed leaders of field stations across tropical regions that host primate research; 157 field stations in 56 countries responded. Respondents reported improved habitat quality and reduced hunting rates at over 80% of field stations and lower operational costs per km2 than protected areas, yet half of those surveyed have less funding now than in 2019. Spatial analyses support field station presence as reducing deforestation. These âearth observatoriesâ provide a high return on investment; we advocate for increased support of field station programs and for governments to support their vital conservation efforts by investing accordingly
Modeling the potential distribution of the threatened Grey-necked Picathartes Picathartes oreas across its entire range
Understanding the distribution and extent of suitable habitats is critical for the conservation of endangered and endemic taxa. Such knowledge is limited for many Central African species, including the rare and globally threatened Grey-necked Picathartes Picathartes oreas, one of only two species in the family Picathartidae endemic to the forests of Central Africa. Despite growing concerns about land-use change resulting in fragmentation and loss of forest cover in the region, neither the extent of suitable habitat nor the potential speciesâ distribution is well known. We combine 339 (new and historical) occurrence records of Grey-necked Picathartes with environmental variables to model the potential global distribution. We used a Maximum Entropy modelling approach that accounted for sampling bias. Our model suggests that Grey-necked Picathartes distribution is strongly associated with steeper slopes and high levels of forest cover, while bioclimatic, vegetation health, and habitat condition variables were all excluded from the final model. We predicted 17,327 km2 of suitable habitat for the species, of which only 2,490 km2 (14.4%) are within protected areas where conservation designations are strictly enforced. These findings show a smaller global distribution of predicted suitable habitat forthe Grey-necked Picathartes than previously thought. This work provides evidence to inform a revision of the International Union for Conservation of Nature (IUCN) Red List status, and may warrant upgrading the status of the species from âNear Threatenedâ to âVulnerableâ
Author Correction: Environmental variability supports chimpanzee behavioural diversity
The original version of the Supplementary Information associated with this Article included an incorrect Supplementary Data 1 file, in which three columns (L, M and P) had slightly different variable names from those written in the code. The HTML has been updated to include a corrected version of Supplementary Data 1; the correct version of Supplementary Data 1 can be found as Supplementary Information associated with this Correction.Additional co-authors: Mattia Bessone, Gregory Brazzola, Valentine Ebua Buh, Rebecca Chancellor, Heather Cohen, Charlotte Coupland, Bryan Curran, Emmanuel Danquah, Tobias Deschner, Dervla Dowd, Manasseh Eno-Nku, J. Michael Fay, Annemarie Goedmakers, Anne-CĂ©line Granjon, Josephine Head, Daniela Hedwig, Veerle Hermans, Sorrel Jones, Jessica Junker, Parag Kadam, Mohamed Kambi, Ivonne Kienast, Deo Kujirakwinja, Kevin E. Langergraber, Juan Lapuente, Bradley Larson, Kevin C. Lee, Vera Leinert, Manuel Llana, Sergio Marrocoli, Amelia C. Meier, David Morgan, Emily Neil, Sonia Nicholl, Emmanuelle Normand, Lucy Jayne Ormsby, Liliana Pacheco, Alex Piel, Jodie Preece, Martha M. Robbins, Aaron Rundus, Crickette Sanz, Volker Sommer, Fiona Stewart, Nikki Tagg, Claudio Tennie, Virginie Vergnes, Adam Welsh, Erin G. Wessling, Jacob Willie, Roman M. Wittig, Yisa Ginath Yuh, Klaus ZuberbĂŒhler & Hjalmar S. KĂŒh
To conserve African tropical forests, invest in the protection of its most endangered group of monkeys, red colobus
Forest loss and overhunting are eroding African tropical biodiversity and threatening local human food security, livelihoods, and health. Emblematic of this ecological crisis is Africa's most endangered group of monkeys, the red colobus (genus Piliocolobus). All 17 species, found in forests from Senegal in the west to the Zanzibar archipelago in the east, are threatened with extinction. Red colobus are among the most vulnerable mammals to gun hunting, typically disappearing from heavily hunted forests before most other large-bodied animals. Despite their conservation status, they are rarely a focus of conservation attention and continue to be understudied. However, red colobus can act as critical barometers of forest health and serve as flagships for catalyzing broader African tropical forest conservation efforts. We offer a plan for conservation of red colobus and their habitats and discuss conservation and policy implications.Additional authors: Deo Kujirakwinja, Barney Long, W. Scott McGraw, Russell A. Mittermeier, Thomas T. Struhsake
Tropical field stations yield high conservation return on investment
Conservation funding is currently limited; cost-effective conservation solutions are essential. We suggest that the thousands of field stations worldwide can play key roles at the frontline of biodiversity conservation and have high intrinsic value. We assessed field stationsâ conservation return on investment and explored the impact of COVID-19. We surveyed leaders of field stations across tropical regions that host primate research; 157 field stations in 56 countries responded. Respondents reported improved habitat quality and reduced hunting rates at over 80% of field stations and lower operational costs per km2 than protected areas, yet half of those surveyed have less funding now than in 2019. Spatial analyses support field station presence as reducing deforestation. These âearth observatoriesâ provide a high return on investment; we advocate for increased support of field station programs and for governments to support their vital conservation efforts by investing accordingly
Tropical field stations yield high conservation return on investment
Conservation funding is currently limited; costâeffective conservation solutions are essential. We suggest that the thousands of field stations worldwide can play key roles at the frontline of biodiversity conservation and have high intrinsic value. We assessed field stationsâ conservation return on investment and explored the impact of COVIDâ19. We surveyed leaders of field stations across tropical regions that host primate research; 157 field stations in 56 countries responded. Respondents reported improved habitat quality and reduced hunting rates at over 80% of field stations and lower operational costs per km 2 than protected areas, yet half of those surveyed have less funding now than in 2019. Spatial analyses support field station presence as reducing deforestation. These âearth observatoriesâ provide a high return on investment; we advocate for increased support of field station programs and for governments to support their vital conservation efforts by investing accordingly
Recommended from our members
Author Correction: Environmental variability supports chimpanzee behavioural diversity
A Correction to this paper has been published: https://doi.org/10.1038/s41467-021-21010-z