36 research outputs found

    Diazoxide choline extended-release tablet in people with Prader-Willi syndrome: results from long-term open-label study

    Get PDF
    OBJECTIVE: This study assessed the effect of 1-year administration of diazoxide choline extended-release tablet (DCCR) on hyperphagia and other complications of Prader-Willi syndrome (PWS). METHODS: The authors studied 125 participants with PWS, age β‰₯ 4 years, who were enrolled in the DESTINY PWS Phase 3 study and who received DCCR for up to 52 weeks in DESTINY PWS and/or its open-label extension. The primary efficacy endpoint was Hyperphagia Questionnaire for Clinical Trials (HQ-CT) score. Other endpoints included behavioral assessments, body composition, hormonal measures, and safety. RESULTS: DCCR administration resulted in significant improvements in HQ-CT (mean [SE] -9.9 [0.77], p  22). Improvements were seen in aggression, anxiety, and compulsivity (all p < 0.0001). There were reductions in leptin, insulin, and insulin resistance, as well as a significant increase in adiponectin (all p < 0.004). Lean body mass was increased (p < 0.0001). Disease severity was reduced as assessed by clinician and caregiver (both p < 0.0001). Common treatment-emergent adverse events included hypertrichosis, peripheral edema, and hyperglycemia. Adverse events infrequently resulted in discontinuation (7.2%). CONCLUSIONS: DCCR administration to people with PWS was well-tolerated and associated with broad-ranging improvements in the syndrome. Sustained administration of DCCR has the potential to reduce disease severity and the burden of care for families

    Clinical and Functional Characterization of a Patient Carrying a Compound Heterozygous Pericentrin Mutation and a Heterozygous IGF1 Receptor Mutation

    Get PDF
    Intrauterine and postnatal longitudinal growth is controlled by a strong genetic component that regulates a complex network of endocrine factors integrating them with cellular proliferation, differentiation and apoptotic processes in target tissues, particularly the growth centers of the long bones. Here we report on a patient born small for gestational age (SGA) with severe, proportionate postnatal growth retardation, discreet signs of skeletal dysplasia, microcephaly and moyamoya disease. Initial genetic evaluation revealed a novel heterozygous IGF1R p.Leu1361Arg mutation affecting a highly conserved residue with the insulin-like growth factor type 1 receptor suggestive for a disturbance within the somatotropic axis. However, because the mutation did not co-segregate with the phenotype and functional characterization did not reveal an obvious impairment of the ligand depending major IGF1R signaling capabilities a second-site mutation was assumed. Mutational screening of components of the somatotropic axis, constituents of the IGF signaling system and factors involved in cellular proliferation, which are described or suggested to provoke syndromic dwarfism phenotypes, was performed. Two compound heterozygous PCNT mutations (p.[Arg585X];[Glu1774X]) were identified leading to the specification of the diagnosis to MOPD II. These investigations underline the need for careful assessment of all available information to derive a firm diagnosis from a sequence aberration

    Targeting insulin-like growth factor pathways

    Get PDF
    Some cancer cells depend on the function of specific molecules for their growth, survival, and metastatic potential. Targeting of these critical molecules has arguably been the best therapy for cancer as demonstrated by the success of tamoxifen and trastuzumab in breast cancer. This review will evaluate the type I IGF receptor (IGF-IR) as a potential target for cancer therapy. As new drugs come forward targeting this receptor system, several issues will need to be addressed in the early clinical trials using these agents

    Hypoxia Impairs Primordial Germ Cell Migration in Zebrafish (Danio rerio) Embryos

    Get PDF
    Background: As a global environmental concern, hypoxia is known to be associated with many biological and physiological impairments in aquatic ecosystems. Previous studies have mainly focused on the effect of hypoxia in adult animals. However, the effect of hypoxia and the underlying mechanism of how hypoxia affects embryonic development of aquatic animals remain unclear. Methodology/Principal Findings: In the current study, the effect of hypoxia on primordial germ cell (PGC) migration in zebrafish embryos was investigated. Hypoxic embryos showed PGC migration defect as indicated by the presence of mis-migrated ectopic PGCs. Insulin-like growth factor (IGF) signaling is required for embryonic germ line development. Using real-time PCR, we found that the mRNA expression levels of insulin-like growth factor binding protein (IGFBP-1), an inhibitor of IGF bioactivity, were significantly increased in hypoxic embryos. Morpholino knockdown of IGFBP-1 rescued the PGC migration defect phenotype in hypoxic embryos, suggesting the role of IGFBP-1 in inducing PGC mis-migration. Conclusions/Significance: This study provides novel evidence that hypoxia disrupts PGC migration during embryonic development in fish. IGF signaling is shown to be one of the possible mechanisms for the causal link between hypoxia and PGC migration. We propose that hypoxia causes PGC migration defect by inhibiting IGF signaling through the induction of IGFBP-1
    corecore