4 research outputs found

    Effect of ethnomedicinal plants used in folklore medicine in Jordan as antibiotic resistant inhibitors on Escherichia coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Escherichia coli </it>occurs naturally in the human gut; however, certain strains that can cause infections, are becoming resistant to antibiotics. Multidrug-resistant <it>E. coli </it>that produce extended-spectrum β lactamases (ESBLs), such as the CTX-M enzymes, have emerged within the community setting as an important cause of urinary tract infections (UTIs) and bloodstream infections may be associated with these community-onsets. This is the first report testing the antibiotic resistance-modifying activity of nineteen Jordanian plants against multidrug-resistant <it>E. coli</it>.</p> <p>Methods</p> <p>The susceptibility of bacterial isolates to antibiotics was tested by determining their minimum inhibitory concentrations (MICs) using a broth microdilution method. Nineteen Jordanian plant extracts (<it>Capparis spinosa </it>L., <it>Artemisia herba-alba Asso, Echinops polyceras </it>Boiss., <it>Gundelia tournefortii </it>L, <it>Varthemia iphionoides </it>Boiss. & Blanche, <it>Eruca sativa Mill</it>., <it>Euphorbia macroclada </it>L., <it>Hypericum trequetrifolium </it>Turra, <it>Achillea santolina </it>L., <it>Mentha longifolia </it>Host, <it>Origanum syriacum </it>L., <it>Phlomis brachydo</it>(Boiss.) Zohary, <it>Teucrium polium </it>L., <it>Anagyris foetida </it>L., <it>Trigonella foenum-graecum </it>L., <it>Thea sinensis </it>L., <it>Hibiscus sabdariffa </it>L., <it>Lepidium sativum </it>L., <it>Pimpinella anisum </it>L.) were combined with antibiotics, from different classes, and the inhibitory effect of the combinations was estimated.</p> <p>Results</p> <p>Methanolic extracts of the plant materials enhanced the inhibitory effects of chloramphenicol, neomycin, doxycycline, cephalexin and nalidixic acid against both the standard strain and to a lesser extent the resistant strain of <it>E. coli</it>. Two edible plant extracts (<it>Gundelia tournefortii L</it>. and <it>Pimpinella anisum L</it>.) generally enhanced activity against resistant strain. Some of the plant extracts like <it>Origanum syriacum </it>L.(Labiateae), <it>Trigonella foenum- graecum </it>L.(Leguminosae), <it>Euphorbia macroclada </it>(Euphorbiaceae) and <it>Hibiscus sabdariffa </it>(Malvaceae) did not enhance the activity of amoxicillin against both standard and resistant <it>E. coli</it>. On the other hand combinations of amoxicillin with other plant extracts used showed variable effect between standard and resistant strains. Plant extracts like <it>Anagyris foetida </it>(Leguminosae) and <it>Lepidium sativum </it>(Umbelliferae) reduced the activity of amoxicillin against the standard strain but enhanced the activity against resistant strains. Three edible plants; Gundelia <it>tournefortii </it>L. (Compositae) <it>Eruca sativa </it>Mill. (Cruciferae), and <it>Origanum syriacum </it>L. (Labiateae), enhanced activity of clarithromycin against the resistant <it>E. coli </it>strain.</p> <p>Conclusion</p> <p>This study probably suggests possibility of concurrent use of these antibiotics and plant extracts in treating infections caused by <it>E. coli </it>or at least the concomitant administration may not impair the antimicrobial activity of these antibiotics.</p

    Preparation, Characterization, and Anticancer Effects of Capsaicin-Loaded Nanoliposomes

    No full text
    Background: Medicinal plants have proven their value as a source of molecules with therapeutic potential, and recent studies have shown that capsaicin has profound anticancer effects in several types of human cancers. However, its clinical use is handicapped due to its poor pharmacokinetics. This study aims to enhance capsaicin’s pharmacokinetic properties by loading the molecule into nanoliposomes model and testing its anticancer activity. Methods: Nanoliposomes were prepared using the thin-film method, and characteristics were examined followed by qualitative and quantitative analyses of encapsulation efficiency and drug loading using HPLC at different lipid/capsaicin ratios. Cell viability assay (MTT) was used to determine IC50. Results: Capsaicin-loaded nanoliposomes showed optimum characteristics of morphology, particle size, zeta potential, and stability. In vitro anticancer activity of capsaicin and capsaicin-loaded nanoliposomes were compared against MCF7, MDA-MB-231, K562, PANC1, and A375 cell lines. Capsaicin-loaded nanoliposomes showed significant improvement in anticancer activity against cancers cell lines studied (p &lt; 0.001), with increased selectivity against cancer cells compared to capsaicin. Conclusion: The encapsulated capsaicin nanoliposomes produced an improvement in pharmacokinetics properties, enhancing the anticancer activity and selectivity compared with capsaicin. This model seems to offer a potential for developing capsaicin formulations for the prevention and treatment of cancer

    Determination of dehydroepiandrosterone in dietary supplements by reversed-phase HPLC

    Get PDF
    Purpose: To develop a reversed phase high performance liquid chromatography (HPLC) method for the determination of dehydroepiandrosterone (DHEA) in dietary supplements. Methods: A reversed-phase high performance liquid chromatography (HPLC) method was developed for the determination of DHEA in dietary supplements. An isocratic system consisting of methanol and water (70:30 v/v) was run at a flow rate of 1 mL/min on a C18 HPLC column to achieve the separation. The method was validated with regard to linearity, intra-day and inter-day precision, and limits of both detection and quantification. Results: The method achieved a retention time of 10.8 min, a resolution of 4.12, a detection limit (LOD) of 50 ng/μL, a quantification limit (LOQ) of 166.7 ng/μL and a label claim of 108.6 % with a relative standard deviation (RSD) of 0.38 % over a range of 0.0625 – 0.50 mg/mL with a correlation coefficient of 0.9997. Conclusion: The method is simple, cost effective, time-saving and reliable for determining DHEA when compared to other reported methods in literature. Thus, it will be of benefit to manufacturers of this dietary supplement to adopt the method for quantitative laboratory analysis
    corecore