3 research outputs found

    QEFSM model and Markov Algorithm for translating Quran reciting rules into Braille code

    Get PDF
    The Holy Quran is the central religious verbal text of Islam. Muslims are expected to read, understand, and apply the teachings of the Holy Quran. The Holy Quran was translated to Braille code as a normal Arabic text without having its reciting rules included. It is obvious that the users of this transliteration will not be able to recite the Quran the right way. Through this work, Quran Braille Translator (QBT) presents a specific translator to translate Quran verses and their reciting rules into the Braille code. Quran Extended Finite State Machine (QEFSM) model is proposed through this study as it is able to detect the Quran reciting rules (QRR) from the Quran text. Basis path testing was used to evaluate the inner work for the model by checking all the test cases for the model. Markov Algorithm (MA) was used for translating the detected QRR and Quran text into the matched Braille code. The data entries for QBT are Arabic letters and diacritics. The outputs of this study are seen in the double lines of Braille symbols; the first line is the proposed Quran reciting rules and the second line is for the Quran scripts

    A comprehensive study of machine learning for predicting cardiovascular disease using Weka and Statistical Package for Social Sciences tools

    No full text
    Artificial intelligence (AI) is simulating human intelligence processes by machines and software simulators to help humans in making accurate, informed, and fast decisions based on data analysis. The medical field can make use of such AI simulators because medical data records are enormous with many overlapping parameters. Using in-depth classification techniques and data analysis can be the first step in identifying and reducing the risk factors. In this research, we are evaluating a dataset of cardiovascular abnormalities affecting a group of potential patients. We aim to employ the help of AI simulators such as Weka to understand the effect of each parameter on the risk of suffering from cardiovascular disease (CVD). We are utilizing seven classes, such as baseline accuracy, naïve Bayes, k-nearest neighbor, decision tree, support vector machine, linear regression, and artificial neural network multilayer perceptron. The classifiers are assisted by a correlation-based filter to select the most influential attributes that may have an impact on obtaining a higher classification accuracy. Analysis of the results based on sensitivity, specificity, accuracy, and precision results from Weka and Statistical Package for Social Sciences (SPSS) is illustrated. A decision tree method (J48) demonstrated its ability to classify CVD cases with high accuracy 95.76%
    corecore