68 research outputs found

    The quality of reports of medical and public health research from Palestinian institutions:A systematic review

    Get PDF
    Research reports are the most common way to communicate research findings for target readerships. Complete, accurate and transparent reporting of research studies facilitates dissemination, interpretation, translation and replication of research findings. Inadequate reporting has major consequences for clinicians, researchers, policy makers and ultimately patients. It impairs critical assessment of the validity, relevance and trustworthiness of research and so impedes its use in practice. It also limits the usability of study findings by other researchers conducting systematic reviews and meta-analyses and building on or replicating studies. In addition, inadequate reporting is one of the key contributors to avoidable waste in biomedical research. Researchers thus have an ethical obligation to research participants, funding organisations and society as a whole to report their findings in ways that are of use in practice and policy makin

    Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: A systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. Findings Globally, 18·7% (95% uncertainty interval 18·4–19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2–59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5–49·6) to 70·5 years (70·1–70·8) for men and from 52·9 years (51·7–54·0) to 75·6 years (75·3–75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5–51·7) for men in the Central African Republic to 87·6 years (86·9–88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3–238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6–42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2–5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. Interpretation This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing. Funding Bill & Melinda Gates Foundation

    a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Publisher Copyright: © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. Findings: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. Interpretation: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. Funding: Bill & Melinda Gates Foundation.publishersversionpublishe

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021:a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundRegular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations.MethodsThe Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds.FindingsThe leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles.InterpretationLong-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere.FundingBill &amp; Melinda Gates Foundation.<br/

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic:a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. Funding Bill &amp; Melinda Gates Foundation.<br/

    a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Publisher Copyright: © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Smoking is the leading behavioural risk factor for mortality globally, accounting for more than 175 million deaths and nearly 4·30 billion years of life lost (YLLs) from 1990 to 2021. The pace of decline in smoking prevalence has slowed in recent years for many countries, and although strategies have recently been proposed to achieve tobacco-free generations, none have been implemented to date. Assessing what could happen if current trends in smoking prevalence persist, and what could happen if additional smoking prevalence reductions occur, is important for communicating the effect of potential smoking policies. Methods: In this analysis, we use the Institute for Health Metrics and Evaluation's Future Health Scenarios platform to forecast the effects of three smoking prevalence scenarios on all-cause and cause-specific YLLs and life expectancy at birth until 2050. YLLs were computed for each scenario using the Global Burden of Disease Study 2021 reference life table and forecasts of cause-specific mortality under each scenario. The reference scenario forecasts what could occur if past smoking prevalence and other risk factor trends continue, the Tobacco Smoking Elimination as of 2023 (Elimination-2023) scenario quantifies the maximum potential future health benefits from assuming zero percent smoking prevalence from 2023 onwards, whereas the Tobacco Smoking Elimination by 2050 (Elimination-2050) scenario provides estimates for countries considering policies to steadily reduce smoking prevalence to 5%. Together, these scenarios underscore the magnitude of health benefits that could be reached by 2050 if countries take decisive action to eliminate smoking. The 95% uncertainty interval (UI) of estimates is based on the 2·5th and 97·5th percentile of draws that were carried through the multistage computational framework. Findings: Global age-standardised smoking prevalence was estimated to be 28·5% (95% UI 27·9–29·1) among males and 5·96% (5·76–6·21) among females in 2022. In the reference scenario, smoking prevalence declined by 25·9% (25·2–26·6) among males, and 30·0% (26·1–32·1) among females from 2022 to 2050. Under this scenario, we forecast a cumulative 29·3 billion (95% UI 26·8–32·4) overall YLLs among males and 22·2 billion (20·1–24·6) YLLs among females over this period. Life expectancy at birth under this scenario would increase from 73·6 years (95% UI 72·8–74·4) in 2022 to 78·3 years (75·9–80·3) in 2050. Under our Elimination-2023 scenario, we forecast 2·04 billion (95% UI 1·90–2·21) fewer cumulative YLLs by 2050 compared with the reference scenario, and life expectancy at birth would increase to 77·6 years (95% UI 75·1–79·6) among males and 81·0 years (78·5–83·1) among females. Under our Elimination-2050 scenario, we forecast 735 million (675–808) and 141 million (131–154) cumulative YLLs would be avoided among males and females, respectively. Life expectancy in 2050 would increase to 77·1 years (95% UI 74·6–79·0) among males and 80·8 years (78·3–82·9) among females. Interpretation: Existing tobacco policies must be maintained if smoking prevalence is to continue to decline as forecast by the reference scenario. In addition, substantial smoking-attributable burden can be avoided by accelerating the pace of smoking elimination. Implementation of new tobacco control policies are crucial in avoiding additional smoking-attributable burden in the coming decades and to ensure that the gains won over the past three decades are not lost. Funding: Bloomberg Philanthropies and the Bill & Melinda Gates Foundation.publishersversionpublishe

    Global fertility in 204 countries and territories, 1950–2021, with forecasts to 2100:a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundAccurate assessments of current and future fertility—including overall trends and changing population age structures across countries and regions—are essential to help plan for the profound social, economic, environmental, and geopolitical challenges that these changes will bring. Estimates and projections of fertility are necessary to inform policies involving resource and health-care needs, labour supply, education, gender equality, and family planning and support. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 produced up-to-date and comprehensive demographic assessments of key fertility indicators at global, regional, and national levels from 1950 to 2021 and forecast fertility metrics to 2100 based on a reference scenario and key policy-dependent alternative scenarios.MethodsTo estimate fertility indicators from 1950 to 2021, mixed-effects regression models and spatiotemporal Gaussian process regression were used to synthesise data from 8709 country-years of vital and sample registrations, 1455 surveys and censuses, and 150 other sources, and to generate age-specific fertility rates (ASFRs) for 5-year age groups from age 10 years to 54 years. ASFRs were summed across age groups to produce estimates of total fertility rate (TFR). Livebirths were calculated by multiplying ASFR and age-specific female population, then summing across ages 10–54 years. To forecast future fertility up to 2100, our Institute for Health Metrics and Evaluation (IHME) forecasting model was based on projections of completed cohort fertility at age 50 years (CCF50; the average number of children born over time to females from a specified birth cohort), which yields more stable and accurate measures of fertility than directly modelling TFR. CCF50 was modelled using an ensemble approach in which three sub-models (with two, three, and four covariates variously consisting of female educational attainment, contraceptive met need, population density in habitable areas, and under-5 mortality) were given equal weights, and analyses were conducted utilising the MR-BRT (meta-regression—Bayesian, regularised, trimmed) tool. To capture time-series trends in CCF50 not explained by these covariates, we used a first-order autoregressive model on the residual term. CCF50 as a proportion of each 5-year ASFR was predicted using a linear mixed-effects model with fixed-effects covariates (female educational attainment and contraceptive met need) and random intercepts for geographical regions. Projected TFRs were then computed for each calendar year as the sum of single-year ASFRs across age groups. The reference forecast is our estimate of the most likely fertility future given the model, past fertility, forecasts of covariates, and historical relationships between covariates and fertility. We additionally produced forecasts for multiple alternative scenarios in each location: the UN Sustainable Development Goal (SDG) for education is achieved by 2030; the contraceptive met need SDG is achieved by 2030; pro-natal policies are enacted to create supportive environments for those who give birth; and the previous three scenarios combined. Uncertainty from past data inputs and model estimation was propagated throughout analyses by taking 1000 draws for past and present fertility estimates and 500 draws for future forecasts from the estimated distribution for each metric, with 95% uncertainty intervals (UIs) given as the 2·5 and 97·5 percentiles of the draws. To evaluate the forecasting performance of our model and others, we computed skill values—a metric assessing gain in forecasting accuracy—by comparing predicted versus observed ASFRs from the past 15 years (2007–21). A positive skill metric indicates that the model being evaluated performs better than the baseline model (here, a simplified model holding 2007 values constant in the future), and a negative metric indicates that the evaluated model performs worse than baseline.FindingsDuring the period from 1950 to 2021, global TFR more than halved, from 4·84 (95% UI 4·63–5·06) to 2·23 (2·09–2·38). Global annual livebirths peaked in 2016 at 142 million (95% UI 137–147), declining to 129 million (121–138) in 2021. Fertility rates declined in all countries and territories since 1950, with TFR remaining above 2·1—canonically considered replacement-level fertility—in 94 (46·1%) countries and territories in 2021. This included 44 of 46 countries in sub-Saharan Africa, which was the super-region with the largest share of livebirths in 2021 (29·2% [28·7–29·6]). 47 countries and territories in which lowest estimated fertility between 1950 and 2021 was below replacement experienced one or more subsequent years with higher fertility; only three of these locations rebounded above replacement levels. Future fertility rates were projected to continue to decline worldwide, reaching a global TFR of 1·83 (1·59–2·08) in 2050 and 1·59 (1·25–1·96) in 2100 under the reference scenario. The number of countries and territories with fertility rates remaining above replacement was forecast to be 49 (24·0%) in 2050 and only six (2·9%) in 2100, with three of these six countries included in the 2021 World Bank-defined low-income group, all located in the GBD super-region of sub-Saharan Africa. The proportion of livebirths occurring in sub-Saharan Africa was forecast to increase to more than half of the world's livebirths in 2100, to 41·3% (39·6–43·1) in 2050 and 54·3% (47·1–59·5) in 2100. The share of livebirths was projected to decline between 2021 and 2100 in most of the six other super-regions—decreasing, for example, in south Asia from 24·8% (23·7–25·8) in 2021 to 16·7% (14·3–19·1) in 2050 and 7·1% (4·4–10·1) in 2100—but was forecast to increase modestly in the north Africa and Middle East and high-income super-regions. Forecast estimates for the alternative combined scenario suggest that meeting SDG targets for education and contraceptive met need, as well as implementing pro-natal policies, would result in global TFRs of 1·65 (1·40–1·92) in 2050 and 1·62 (1·35–1·95) in 2100. The forecasting skill metric values for the IHME model were positive across all age groups, indicating that the model is better than the constant prediction.InterpretationFertility is declining globally, with rates in more than half of all countries and territories in 2021 below replacement level. Trends since 2000 show considerable heterogeneity in the steepness of declines, and only a small number of countries experienced even a slight fertility rebound after their lowest observed rate, with none reaching replacement level. Additionally, the distribution of livebirths across the globe is shifting, with a greater proportion occurring in the lowest-income countries. Future fertility rates will continue to decline worldwide and will remain low even under successful implementation of pro-natal policies. These changes will have far-reaching economic and societal consequences due to ageing populations and declining workforces in higher-income countries, combined with an increasing share of livebirths among the already poorest regions of the world.FundingBill &amp; Melinda Gates Foundation

    a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Funding Information: Research reported in this publication was supported by the Bill & Melinda Gates Foundation (OPP1152504); Queensland Department of Health, Australia; UK Department of Health and Social Care; the Norwegian Institute of Public Health; St Jude Children's Research Hospital; and the New Zealand Ministry of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funders. Data for this research was provided by MEASURE Evaluation, funded by the US Agency for International Development (USAID). Views expressed do not necessarily reflect those of USAID, the US Government, or MEASURE Evaluation. This study uses a dataset provided by European Centre for Disease Prevention and Control (ECDC) based on data provided by WHO and Ministries of Health from the affected countries. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the ECDC. The accuracy of the authors' statistical analysis and the findings they report are not the responsibility of ECDC. ECDC is not responsible for conclusions or opinions drawn from the data provided. ECDC is not responsible for the correctness of the data and for data management, data merging, and data collation after provision of the data. ECDC shall not be held liable for improper or incorrect use of the data. Health Behaviour in School-Aged Children (HBSC) is an international study carried out in collaboration with WHO/EURO. The international coordinator of the 1997\u201398, 2001\u201302, 2005\u201306, and 2009\u201310 surveys was Candace Currie and the Data Bank Manager for the 1997\u201398 survey was Bente Wold, whereas for the following survey Oddrun Samda was the databank manager. A list of principal investigators in each country can be found at http://www.hbsc.org. Parts of this material are based on data and information provided by the Canadian institute for Health Information. However, the analyses, conclusions, opinions and statements expressed herein are those of the author and not those of the Canadian Institute for Health information. The data reported here have been supplied by the US Renal Data System (USRDS). The interpretation and reporting of these data are the responsibility of the authors and in no way should be seen as an official policy or interpretation of the US Government. The data used in this paper come from the 2009\u201310 Ghana Socioeconomic Panel Study Survey which is a nationally representative survey of over 5,000 households in Ghana. The survey is a joint effort undertaken by the Institute of Statistical, Social and Economic Research (ISSER) at the University of Ghana, and the Economic Growth Centre (EGC) at Yale University. It was funded by the Economic Growth Center. At the same time, ISSER and the EGC are not responsible for the estimations reported by the analyst(s). The harmonised dataset was downloaded from the Global Dietary Database (GDD) website ( https://www.globaldietarydatabase.org/). The Canadian Community Health Survey - Nutrition (CCHS-Nutrition), 2015 is available online ( https://www.globaldietarydatabase.org/management/microdata-surveys/650). The harmonisation of the original dataset was performed by GDD. The data was adapted from Statistics Canada, Canadian Community Health Survey: Public Use Microdata File, 2015/2016 (Statistics Canada. CCHS-Nutrition, 2015); this does not constitute an endorsement by Statistics Canada of this product. The data is used under the terms of the Statistics Canada Open Licence (Statistics Canada. Statistics Canada Open Licence. https://www.statcan.gc.ca/eng/reference/licence). The Health and Retirement Study (HRS) is sponsored by the National Institute on Aging (grant number NIA U01AG009740) and is conducted by the University of Michigan. The Palestinian Central Bureau of Statistics granted the researchers access to relevant data in accordance with license no. SLN2014-3-170, after subjecting data to processing aiming to preserve the confidentiality of individual data in accordance with the General Statistics Law - 2000. The researchers are solely responsible for the conclusions and inferences drawn upon available data. The results and conclusions are mine and not those of Eurostat, the European Commission, or any of the national statistical authorities whose data have been used. This manuscript is based on data collected and shared by the International Vaccine Institute (IVI) from an original study it conducted with support from the Bill & Melinda Gates Foundation. This paper uses data from SHARE Waves 1, 2, 3 (SHARELIFE), 4, 5 and 6 (dois: 10.6103/SHARE.w1.611,10.6103/SHARE.w2.611, 10.6103/SHARE.w3.611, 10.6103/SHARE.w4.611, 10.6103/SHARE.w5.611, 10.6103/SHARE.w6.611), see B\u00F6rsch-Supan et al. (2013) for methodological details. The SHARE data collection has been primarily funded by the European Commission through FP5 (QLK6-CT-2001-00360), FP6 (SHARE-I3: RII-CT-2006-062193, COMPARE: CIT5-CT-2005-028857, SHARELIFE: CIT4-CT-2006- 028812) and FP7 (SHARE-PREP: N\u00B0211909, SHARE-LEAP: N\u00B0227822, SHARE M4: N\u00B0261982). Additional funding from the German Ministry of Education and Research, the Max Planck Society for the Advancement of Science, the US National Institute on Aging (U01_AG09740-13S2, P01_AG005842, P01_AG08291, P30_AG12815, R21_AG025169, Y1-AG-4553-01, IAG_BSR06-11, OGHA_04-064, HHSN271201300071C) and from various national funding sources is gratefully acknowledged (see www.share-project.org). This paper uses data from the Algeria - Setif and Mostaganem 2003 STEPS survey, implemented by Ministry of Health, Population and Hospital Reform (Algeria) with the support of WHO. This paper uses data from the Algeria 2016-2017 STEPS survey, implemented by Ministry of Health (Algeria) with the support of WHO. This paper uses data from the American Samoa 2004 STEPS survey, implemented by Department of Health (American Samoa) and Monash University (Australia) with the support of WHO. This paper uses data from the Armenia 2016 STEPS survey, implemented by Ministry of Health (Botswana) with the support of WHO. This paper uses data from the Azerbaijan 2017 STEPS survey, implemented by Ministry of Health (Azerbaijan) with the support of WHO. This paper uses data from the Bangladesh 2018 STEPS survey, implemented by Ministry of Health and Family Welfare (Bangladesh) with the support of WHO. This paper uses data from the Barbados 2007 STEPS survey, implemented by Ministry of Health (Barbados) with the support of WHO. This paper uses data from the Belarus 2016-2017 STEPS survey, implemented by Republican Scientific and Practical Center of Medical Technologies, Informatization, Management and Economics of Public Health (Belarus) with the support of WHO. This paper uses data from the Benin - Littoral 2007 STEPS survey, the Benin 2008 STEPS survey, and the Benin 2015 STEPS survey, implemented by Ministry of Health (Benin) with the support of WHO. This paper uses data from the Bhutan - Thimphu 2007 STEPS survey, implemented by Ministry of Health (Bhutan) with the support of WHO. This paper uses data from the Bhutan 2014 STEPS survey, implemented by Ministry of Health (Bhutan) with the support of the World Health Organization. This paper uses data from the Botswana 2014 STEPS survey, implemented by Ministry of Health (Armenia), National Institute of Health with the support of WHO. This paper uses data from the Brunei 2015-2016 STEPS survey, implemented by Ministry of Health (Brunei) with the support of WHO. This paper uses data from the Cambodia 2010 STEPS survey, implemented by Ministry of Health (Cambodia) with the support of WHO. This paper uses data from the Cameroon 2003 STEPS survey, implemented by Health of Populations in Transition (HoPiT) Research Group (Cameroon) and Ministry of Public Health (Cameroon) with the support of WHO. This paper uses data from the Cape Verde 2007 STEPS survey, implemented by Ministry of Health, National Statistics Office with the support of WHO. This paper uses data from the Central African Republic - Bangui 2010 STEPS survey and Central African Republic - Bangui and Ombella M'Poko 2016 STEPS survey, implemented by Ministry of Health and Population (Central African Republic) with the support of WHO. This paper uses data from the Comoros 2011 STEPS survey, implemented by Ministry of Health (Comoros) with the support of WHO. This paper uses data from the Congo - Brazzaville 2004 STEPS survey, implemented by Ministry of Health, Population and Hospital Reform (Algeria) with the support of WHO. This paper uses data from the Cook Islands 2003\u20132004 survey and Cook Islands 2013\u20132015 STEPS survey, implemented by Ministry of Health (Cook Islands) with the support of WHO. This paper uses data from the Eritrea 2010 STEPS survey, implemented by Ministry of Health (Eritrea) with the support of WHO. This paper uses data from the Fiji 2002 STEPS survey, implemented by Fiji School of Medicine, Menzies Center for Population Health Research, University of Tasmania (Australia), Ministry of Health (Fiji) with the support of WHO. This paper uses data from the Fiji 2011 STEPS survey, implemented by Ministry of Health (Fiji) with the support of WHO. This paper uses data from the Georgia 2016 STEPS survey, implemented by National Center for Disease Control and Public Health (Georgia) with the support of WHO. This paper uses data from the Ghana - Greater Accra Region 2006 STEPS survey, implemented by Ghana Health Service with the support of WHO. This paper uses data from the Guniea 2009 STEPS survey, implemented by Ministry of Public Health and Hygiene (Guinea) with the support of WHO. This paper uses data from the Guyana 2016 STEPS survey, implemented by Ministry of Health (Guyana) with the support of WHO. This paper uses data from the Iraq 2015 STEPS survey, implemented by Ministry of Health (Iraq) with the support of WHO. This paper uses data from the Kenya 2015 STEPS survey, implemented by Kenya National Bureau of Statistics, Ministry of Health (Kenya) with the support of WHO. This paper uses data from the Kiribati 2004\u20132006 STEPS survey and the Kiribati 2016 survey, implemented by Ministry of Health and Medical Services (Kiribati) with the support of WHO. This paper uses data from the Kuwait 2006 STEPS survey and the Kuwait 2014 STEPS survey, implemented by Ministry of Health (Kuwait) with the support of WHO. This paper uses data from the Kyrgyzstan 2013 STEPS survey, implemented by Ministry of Health (Kyrgyzstan) with the support of WHO. This paper uses data from the Laos 2013 STEPS survey, implemented by Ministry of Health (Laos) with the support of WHO. This paper uses data from the Lebanon 2016-2017 STEPS survey, implemented by Ministry of Public Health (Lebanon) with the support of WHO. This paper uses data from the Lesotho 2012 STEPS survey, implemented by Ministry of Health and Social Welfare (Lesotho) with the support of WHO. This paper uses data from the Liberia 2011 STEPS survey, implemented by Ministry of Health and Social Welfare (Liberia) with the support of WHO. This paper uses data from the Libya 2009 STEPS survey, implemented by Secretariat of Health and Environment (Libya) with the support of WHO. This paper uses data from the Malawi 2009 STEPS survey and Malawi 2017 STEPS survey, implemented by Ministry of Health (Malawi) with the support of WHO. This paper uses data from the Mali 2007 STEPS survey, implemented by Ministry of Health (Mali) with the support of WHO. This paper uses data from the Marshall Islands 2002 STEPS survey and the Marshall Islands 2017-2018 STEPS survey, implemented by Ministry of Health (Marshall Islands) with the support of WHO. This paper uses data from the Mauritania- Nouakchott 2006 STEPS survey, implemented by Ministry of Health (Mauritania) with the support of WHO. This paper uses data from the Micronesia - Chuuk 2006 STEPS survey, implemented by Ministry of Health (Palestine) with the support of WHO. This paper uses data from the Micronesia - Chuuk 2016 STEPS survey, implemented by Chuuk Department of Health Services (Micronesia), Department of Health and Social Affairs (Micronesia) with the support of WHO. This paper uses data from the Micronesia - Pohnpei 2002 STEPS survey, implemented by Centre for Physical Activity and Health, University of Sydney (Australia), Department of Health and Social Affairs (Micronesia), Fiji School of Medicine, Micronesia Human Resources Development Center, Pohnpei State Department of Health Services with the support of WHO. This paper uses data from the Micronesia - Pohnpei 2008 STEPS survey, implemented by FSM Department of Health and Social Affairs, Pohnpei State Department of Health Services with the support of WHO. This paper uses data from the Micronesia - Yap 2009 STEPS survey, implemented by Ministry of Health and Social Affairs (Micronesia) with the support of WHO. This paper uses data from the Micronesia- Kosrae 2009 STEPS survey, implemented by FSM Department of Health and Social Affairs with the support of WHO. This paper uses data from the Moldova 2013 STEPS survey, implemented by Ministry of Health (Moldova) with the support of WHO. This paper uses data from the Mongolia 2005 STEPS survey, the Mongolia 2009 STEPS survey, and the Mongolia 2013 STEPS survey, implemented by Ministry of Health (Mongolia) with the support of WHO. This paper uses data from the Morocco 2017 STEPS survey, implemented by Ministry of Health (Morocco) with the support of WHO. This paper uses data from the Mozambique 2005 STEPS survey, implemented by Ministry of Health (Mozambique) with the support of WHO. This paper uses data from the Myanmar 2014 STEPS survey, implemented by Ministry of Health (Myanmar) with the support of WHO. This paper uses data from the Nauru 2004 STEPS survey and the Nauru 2015\u20132016 STEPS survey, implemented by Ministry of Health (Nauru) with the support of WHO. This paper uses data from the Niger 2007 STEPS survey, implemented by Ministry of Health (Niger) with the support of WHO. This paper uses data from the Palau 2011-2013 STEPS survey and the Palau 2016 STEPS survey, implemented by Ministry of Health (Palau) with the support of WHO. This paper uses data from the Palestine 2010-2011 STEPS survey, implemented by Chuuk Department of Health Services (Micronesia), Department of Health and Social Affairs (Micronesia) with the support of WHO. This paper uses data from the Qatar 2012 STEPS survey, implemented by Supreme Council of Health (Qatar) with the support of WHO. This paper uses data from the Rwanda 2012-2013 STEPS survey, implemented by Ministry of Health (Rwanda) with the support of WHO. This paper uses data from the Samoa 2002 STEPS survey and the Samoa 2013 STEPS survey, implemented by Ministry of Health (Samoa) with the support of WHO. This paper uses data from the Sao Tome and Principe 2008 STEPS survey, implemented by Ministry of Health (Sao Tome and Principe) with the support of WHO. This paper uses data from the Seychelles 2004 STEPS survey, implemented by Ministry of Health (Seychelles) with the support of WHO. This paper uses data from the Solomon Islands 2005\u20132006 STEPS survey and the Solomon Islands 2015 STEPS survey, implemented by Ministry of Health and Medical Services (Solomon Islands) with the support of WHO. This paper uses data from the Sri Lanka 2014\u20132015 STEPS survey, implemented by Ministry of Health (Sri Lanka) with the support of WHO. This paper uses data from the Sudan 2016 STEPS survey, implemented by Ministry of Health (Sudan) with the support of WHO. This paper uses data from the Swaziland 2007 STEPS survey and the Swaziland 2014 STEPS survey, implemented by Ministry of Health (Swaziland) with the support of WHO. This paper uses data from the Tajikistan 2016 STEPS survey, implemented by Ministry of Health (Tajikistan) with the support of WHO. This paper uses data from the Tanzania - Zanzibar 2011 STEPS survey, implemented by Ministry of Health (Zanzibar) with the support of WHO. This paper uses data from the Tanzania 2012 STEPS survey, implemented by National Institute for Medical Research (Tanzania) with the support of WHO. This paper uses data from the Timor-Leste 2014 STEPS survey, implemented by Ministry of Health (Timor-Leste) with the support of WHO. This paper uses data from the Togo 2010\u20132011 STEPS survey, implemented by Ministry of Health (Togo) with the support of WHO. This paper uses data from the Tokelau 2005 STEPS survey, implemented by Tokelau Department of Health, Fiji School of Medicine with the support of WHO. This paper uses data from the Tonga 2004 STEPS survey and the Tonga 2011\u20132012 STEPS survey, implemented by Ministry of Health (Tonga) with the support of WHO. This paper uses data from the Tuvalu 2015 STEPS survey, implemented by Ministry of Health (Tuvalu), with the support of WHO. This paper uses data from the Uganda 2014 STEPS survey, implemented by Ministry of Health (Uganda) with the support of WHO. This paper uses data from the Uruguay 2006 STEPS survey and the Uruguay 2013-2014 STEPS survey, implemented by Ministry of Health (Uruguay) with the support of WHO. This paper uses data from the Vanuatu 2011 STEPS survey, implemented by Ministry of Health (Vanuatu) with the support of WHO. This paper uses data from the Viet Nam 2009 STEPS survey and the Viet Nam 2015 STEPS survey, implemented by Ministry of Health (Viet Nam) with the support of WHO. This paper uses data from the Virgin Islands, British 2009 STEPS survey, implemented by Ministry of Health and Social Development (British Virgin Islands) with the support of WHO. This paper uses data from the Zambia - Lusaka 2008 STEPS survey, implemented by Ministry of Health (Zambia) with the support of WHO. This paper uses data from the Zambia 2017 STEPS survey, implemented by Ministry of Health (Zambia) with the support of WHO. This research used data from the Chile National Health Survey 2003, 2009\u201310, and 2016\u201317. The authors are grateful to the Ministry of Health, survey copyright owner, for allowing them to have the database. All results of the study are those of the author and in no way committed to the Ministry. This research used information from the Health Surveys for epidemiological surveillance of the Undersecretary of Public Health. The authors thank the Ministry of Health of Chile, having allowed them to have access to the database. All the results obtained from the study or research are the responsibility of the authors and in no way compromise that institution. This research uses data from Add Health, a program project designed by J Richard Udry, Peter S Bearman, and Kathleen Mullan Harris, and funded by a grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, with cooperative funding from 17 other agencies. Special acknowledgment is due to Ronald R Rindfuss and Barbara Entwisle for assistance in the original design. Persons interested in obtaining data files from Add Health should contact Add Health, Carolina Population Center, 123 W. Franklin Street, Chapel Hill, NC 27516-2524, USA ( [email protected]). No direct support was received from grant P01-HD31921 for this analysis. This study has been realised using the data collected by the Swiss Household Panel (SHP), which is based at the Swiss Centre of Expertise in the Social Sciences FORS. The project is financed by the Swiss National Science Foundation. We thank the Russia Longitudinal Monitoring Survey, RLMS-HSE, conducted by the National Research University Higher School of Economics and ZAO Demoscope together with Carolina Population Center, University of North Carolina at Chapel Hill, and the Institute of Sociology RAS for making these data available. Editorial note: The Lancet Group takes a neutral position with respect to territorial claims in published maps and institutional affiliations. Publisher Copyright: © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-se

    Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013

    Get PDF
    The Millennium Declaration in 2000 brought special global attention to HIV, tuberculosis, and malaria through the formulation of Millennium Development Goal (MDG) 6. The Global Burden of Disease 2013 study provides a consistent and comprehensive approach to disease estimation for between 1990 and 2013, and an opportunity to assess whether accelerated progress has occurred since the Millennium Declaration
    • …
    corecore