13 research outputs found
An overview of the Jordanian oil shale: its chemical and geologic characteristics, exploration, reserves and feasibility for oil and cement production
Abstract
Oil shale is the most abundant fossil energy resource discovered in Jordan, ranking third after the USA and Brazil in terms of oil shale reserves. This asset is considered to be Jordan's most extensive domestic fossil-fuel source. The identified reserves of this oil shale are huge and sufficient to satisfy the national energy needs for hundreds of years. Numerous geologic studies have shown that the country contains several oil shale deposits. These deposits are regarded as the richest in organic bituminous marl and limestone that occur at shallow depth. Jordanian oil shale is generally of a good quality, with relatively low ash and moisture contents, a gross calorific value of 7.5 MJ/kg, and an oil yield of 8 to 12%. The spent shale has residual carbon content that may be burned to produce further energy, and ash that can be used for cement and building materials. The current study summarizes the results of the former feasibility studies and discuses the scope of future usage of Jordanian oil shale. The value of this oil shale and its associated products is highlighted herein
Report of the Topical Group on Higgs Physics for Snowmass 2021: The Case for Precision Higgs Physics
A future Higgs Factory will provide improved precision on measurements of
Higgs couplings beyond those obtained by the LHC, and will enable a broad range
of investigations across the fields of fundamental physics, including the
mechanism of electroweak symmetry breaking, the origin of the masses and mixing
of fundamental particles, the predominance of matter over antimatter, and the
nature of dark matter. Future colliders will measure Higgs couplings to a few
per cent, giving a window to beyond the Standard Model (BSM) physics in the
1-10 TeV range. In addition, they will make precise measurements of the Higgs
width, and characterize the Higgs self-coupling. This report details the work
of the EF01 and EF02 working groups for the Snowmass 2021 study.Comment: 44 pages, 40 figures, Report of the Topical Group on Higgs Physics
for Snowmass 2021. The first four authors are the Conveners, with
Contributions from the other author
CALICE Report to the DESY Physics Research Committee
We present an overview of the CALICE activities on calorimeter development for a future linear collider. We report on test beam analysis results, the status of prototype development and future plans.We present an overview of the CALICE activities on calorimeter development for a future linear collider. We report on test beam analysis results, the status of prototype development and future plans
CALICE Report to the DESY Physics Research Committee
We present an overview of the CALICE activities on calorimeter development for a future linear collider. We report on test beam analysis results, the status of prototype development and future plans