4 research outputs found

    Detection of multidrug-resistant bacteria in the occupied Palestinian territory: a cross-sectional study

    Get PDF
    Background Antimicrobial resistance is a worldwide threat to public health. WHO has created several resolutions and strategies on this subject at the World Health Assembly. In May, 2015, WHO published a global action plan to mitigate antimicrobial resistance, including tracking and global surveillance focusing on improving awareness and understanding of this issue. The aim of this study was to screen for carbapenem-resistant bacteria in the occupied Palestinian Territory, to investigate the mechanisms behind the resistance, and to assess the scope of this difficulty in the area. Methods During 6 weeks in 2012, we collected all available Gram-negative isolates taken from inpatients and outpatients in hospital laboratories at Al-Shifa Hospital and five additional hospitals in the West Bank to screen for carbapenem resistance. Resistant isolates were identified with MALDI-TOF, mapped for their resistance pattern, and

    Role for RpoS but Not RelA of Legionella pneumophila in Modulation of Phagosome Biogenesis and Adaptation to the Phagosomal Microenvironment

    No full text
    The induction of virulence traits by Legionella pneumophila at the post-exponential phase has been proposed to be triggered by the stringent response mediated by RelA, which triggers RpoS. We show that L. pneumophila rpoS but not relA is required for early intracellular survival and replication within human monocyte-derived macrophages and Acanthamoeba polyphaga. In addition, L. pneumophila rpoS but not relA is required for expression of the pore-forming activity. We provide evidence that RpoS plays a role in the modulation of phagosome biogenesis and in adaptation to the phagosomal microenvironment. Thus, there is no functional link between the stringent response and RpoS in the pathogenesis of L. pneumophila

    Incomplete Activation of Macrophage Apoptosis during Intracellular Replication of Legionella pneumophila

    No full text
    The ability of the intracellular bacterium Legionella pneumophila to cause disease is totally dependent on its ability to modulate the biogenesis of its phagosome and to replicate within alveolar cells. Upon invasion, L. pneumophila activates caspase-3 in macrophages, monocytes, and alveolar epithelial cells in a Dot/Icm-dependent manner that is independent of the extrinsic or intrinsic pathway of apoptosis, suggesting a novel mechanism of caspase-3 activation by this intracellular pathogen. We have shown that the inhibition of caspase-3 prior to infection results in altered biogenesis of the L. pneumophila-containing phagosome and in an inhibition of intracellular replication. In this report, we show that the preactivation of caspase-3 prior to infection does not rescue the intracellular replication of L. pneumophila icmS, icmR, and icmQ mutant strains. Interestingly, preactivation of caspase-3 through the intrinsic and extrinsic pathways of apoptosis in both human and mouse macrophages inhibits intracellular replication of the parental stain of L. pneumophila. Using single-cell analysis, we show that intracellular L. pneumophila induces a robust activation of caspase-3 during exponential replication. Surprisingly, despite this robust activation of caspase-3 in the infected cell, the host cell does not undergo apoptosis until late stages of infection. In sharp contrast, the activation of caspase-3 by apoptosis-inducing agents occurs concomitantly with the apoptotic death of all cells that exhibit caspase-3 activation. It is only at a later stage of infection, and concomitant with the termination of intracellular replication, that the L. pneumophila-infected cells undergo apoptotic death. We conclude that although a robust activation of caspase-3 is exhibited throughout the exponential intracellular replication of L. pneumophila, apoptotic cell death is not executed until late stages of the infection, concomitant with the termination of intracellular replication

    Detection of NDM-2-producing Acinetobacter baumannii and VIM-producing Pseudomonas aeruginosa in Palestine

    No full text
    The aim of this study was to screen for carbapenem-resistant Gram-negative bacteria in Palestine and subsequently to identify and investigate the mechanisms of resistance. For a period of 6 weeks, all Gram-negative isolates were collected from six Palestinian hospital laboratories and were tested for susceptibility using 10 μg meropenem disks. Isolates showing resistance to meropenem were further investigated. The presence of carbapenemases was assessed by PCR. In addition, antimicrobial susceptibility testing, an efflux pump inhibitor assay and pulsed-field gel electrophoresis (PFGE) were performed. Isolates producing carbapenemases were further investigated by multilocus sequence typing (MLST). In total, 248 Gram-negative isolates were collected from the six laboratories. Among the 248 tested isolates, 15 Acinetobacter baumannii and 6 Pseudomonas aeruginosa were resistant to meropenem. One A
    corecore