18 research outputs found
Optimization of insect cell based protein production processes - online monitoring, expression systems, scale-up
Due to the increasing use of insect cell based expression systems in research and industrial recombinant protein production, the development of efficient and reproducible production processes remains a challenging task. In this context, the application of online monitoring techniques is intended to ensure high and reproducible product qualities already during the early phases of process development. In the following chapter, the most common transient and stable insect cell based expression systems are briefly introduced. Novel applications of insect cell based expression systems for the production of insect derived antimicrobial peptides/proteins (AMPs) are discussed using the example of G. mellonella derived gloverin. Suitable in situ sensor techniques for insect cell culture monitoring in disposable and common bioreactor systems are outlined with respect to optical and capacitive sensor concepts. Since scale-up of production processes is one of the most critical steps in process development, a conclusive overview is given about scale up aspects for industrial insect cell culture processes
Soft sensor for monitoring biomass subpopulations in mammalian cell culture processes
ObjectivesBiomass subpopulations in mammalian cell culture processes cause impurities and influence productivity, which requires this critical process parameter to be monitored in real-time.ResultsFor this reason, a novel soft sensor concept for estimating viable, dead and lysed cell concentration was developed, based on the robust and cheap in situ measurements of permittivity and turbidity in combination with a simple model. It could be shown that the turbidity measurements contain information about all investigated biomass subpopulations. The novelty of the developed soft sensor is the real-time estimation of lysed cell concentration, which is directly correlated to process-related impurities such as DNA and host cell protein in the supernatant. Based on data generated by two fed-batch processes the developed soft sensor is described and discussed.ConclusionsThe presented soft sensor concept provides a tool for viable, dead and lysed cell concentration estimation in real-time with adequate accuracy and enables further applications with respect to process optimization and control
Real-time monitoring of cell viability and cell density on the basis of a three dimensional optical reflectance method (3D-ORM): investigation of the effect of sub-lethal and lethal injuries
Cell density and cell viability have been followed on-line by using a three-dimensional optical reflectance method (3D-ORM) probe. This method has allowed to highlight the differences between a well-mixed and a scale-down bioreactor configured in order to reproduce mixing deficiencies during a fed-batch culture of E. coli. These differences have been observed both for the obscuration factor (OBF) and the coincidence probability (COP) delivered by the probe. These parameters are correlated to flow cytometry measurement based on the PI-uptake test and cell density based on optical density measurement. This first set of results has pointed out the fact that the 3D-ORM probe is sensitive to sub-lethal injuries encountered by microbial cells in process-related conditions. The effect of lethal injuries has been further investigated on the basis of additional experiments involving heat stress and a sharp increase of the OBF has been observed indicating that cells are effectively injured by the increase of temperature. However, further improvement of the probe are needed in order to give access to single-cell measurements
Turbidimetry and dielectric spectroscopy as process analytical technologies for mammalian and insect cell cultures
The production of biopharmaceuticals in cell culture involves stringent controls to ensure product safety and quality. To meet these requirements, quality by design principles must be applied during the development of cell culture processes so that quality is built into the product by understanding the manufacturing process. One key aspect is process analytical technology, in which comprehensive online monitoring is used to identify and control critical process parameters that affect critical quality attributes such as the product titer and purity. The application of industry-ready technologies such as turbidimetry and dielectric spectroscopy provides a deeper understanding of biological processes within the bioreactor and allows the physiological status of the cells to be monitored on a continuous basis. This in turn enables selective and targeted process controls to respond in an appropriate manner to process disturbances. This chapter outlines the principles of online dielectric spectroscopy and turbidimetry for the measurement of optical density as applied to mammalian and insect cells cultivated in stirred-tank bioreactors either in suspension or as adherent cells on microcarriers