8 research outputs found

    The Majorana Project

    Full text link
    Building a \BBz experiment with the ability to probe neutrino mass in the inverted hierarchy region requires the combination of a large detector mass sensitive to \BBz, on the order of 1-tonne, and unprecedented background levels, on the order of or less than 1 count per year in the \BBz signal region. The MAJORANA Collaboration proposes a design based on using high-purity enriched Ge-76 crystals deployed in ultra-low background electroformed Cu cryostats and using modern analysis techniques that should be capable of reaching the required sensitivity while also being scalable to a 1-tonne size. To demonstrate feasibility, the collaboration plans to construct a prototype system, the MAJORANA DEMONSTRATOR, consisting of 30 kg of 86% enriched \Ge-76 detectors and 30 kg of natural or isotope-76-depleted Ge detectors. We plan to deploy and evaluate two different Ge detector technologies, one based on a p-type configuration and the other on n-type.Comment: paper submitted for the 2008 Carolina International Symposium on Neutrino Physic

    Theory of neutrinoless double beta decay

    Full text link
    Neutrinoless double beta decay, which is a very old and yet elusive process, is reviewed. Its observation will signal that lepton number is not conserved and the neutrinos are Majorana particles. More importantly it is our best hope for determining the absolute neutrino mass scale at the level of a few tens of meV. To achieve the last goal certain hurdles have to be overcome involving particle, nuclear and experimental physics. Nuclear physics is important for extracting the useful information from the data. One must accurately evaluate the relevant nuclear matrix elements, a formidable task. To this end, we review the sophisticated nuclear structure approaches recently been developed, which give confidence that the needed nuclear matrix elements can be reliably calculated. From an experimental point of view it is challenging, since the life times are long and one has to fight against formidable backgrounds. If a signal is found, it will be a tremendous accomplishment. Then, of course, the real task is going to be the extraction of the neutrino mass from the observations. This is not trivial, since current particle models predict the presence of many mechanisms other than the neutrino mass, which may contribute or even dominate this process. We will, in particular, consider the following processes: (i)The neutrino induced, but neutrino mass independent contribution. (ii)Heavy left and/or right handed neutrino mass contributions. (iii)Intermediate scalars (doubly charged etc). (iv)Supersymmetric (SUSY) contributions. We will show that it is possible to disentangle the various mechanisms and unambiguously extract the important neutrino mass scale, if all the signatures of the reaction are searched in a sufficient number of nuclear isotopes.Comment: 104 pages, 6 tables, 25 figures.References added. To appear in ROP (Reports on Progress in Physics), copyright RO

    Isotopically modified Ge detectors for Gerda: from production to operation

    Full text link
    The GERDA experiment searches for the neutrinoless double beta (0νββ) decay of 76Ge using high-purity germanium detectors made of material enriched in 76Ge. For Phase II of the experiment a sensitivity for the half life T1/20ν ~ 2centerdot1026 yr is envisioned. Modified Broad Energy Germanium detectors (BEGe) with thick n+ electrodes provide the capability to efficiently identify and reject background events, while keeping a large acceptance for the 0νββ-decay signal through novel pulse-shape discrimination (PSD) techniques. The viability of producing thick-window BEGe-type detectors for the GERDA experiment is demonstrated by testing all the production steps from the procurement of isotopically modified germanium up to working BEGe detectors. Comprehensive testing of the spectroscopic as well as PSD performance of the GERDA Phase II prototype BEGe detectors proved that the properties of these detectors are identical to those produced previously from natural germanium material following the standard production line of the manufacturer. Furthermore, the production of BEGe detectors from a limited amount of isotopically modified germanium served to optimize the production, in order to maximize the overall detector mass yield. The results of this test campaign provided direct input for the subsequent production of the enriched germanium detectors

    Isotopically modified Ge detectors for Gerda: from production to operation

    Full text link
    The GERDA experiment searches for the neutrinoless double beta (0νββ) decay of 76Ge using high-purity germanium detectors made of material enriched in 76Ge. For Phase II of the experiment a sensitivity for the half life T1/20ν ~ 2centerdot1026 yr is envisioned. Modified Broad Energy Germanium detectors (BEGe) with thick n+ electrodes provide the capability to efficiently identify and reject background events, while keeping a large acceptance for the 0νββ-decay signal through novel pulse-shape discrimination (PSD) techniques. The viability of producing thick-window BEGe-type detectors for the GERDA experiment is demonstrated by testing all the production steps from the procurement of isotopically modified germanium up to working BEGe detectors. Comprehensive testing of the spectroscopic as well as PSD performance of the GERDA Phase II prototype BEGe detectors proved that the properties of these detectors are identical to those produced previously from natural germanium material following the standard production line of the manufacturer. Furthermore, the production of BEGe detectors from a limited amount of isotopically modified germanium served to optimize the production, in order to maximize the overall detector mass yield. The results of this test campaign provided direct input for the subsequent production of the enriched germanium detectors
    corecore