17 research outputs found

    Long-term outcomes from the Phase II L-MIND study of tafasitamab (MOR208) plus lenalidomide in patients with relapsed or refractory diffuse large B-cell lymphoma

    Get PDF
    Tafasitamab; B-cell lymphomaTafasitamab; Linfoma de células BTafasitamab; Limfoma de cèl·lules BTafasitamab (MOR208), an Fc-modified, humanized, anti-CD19 monoclonal antibody, combined with the immunomodulatory drug lenalidomide was clinically active with a good tolerability profile in the open-label, single-arm, phase II L-MIND study of patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL) ineligible for autologous stem-cell transplantation. To assess long-term outcomes, we report an updated analysis with ≥35 months’ follow-up. Patients were aged >18 years, had received one to three prior systemic therapies (including ≥1 CD20-targeting regimen) and Eastern Cooperative Oncology Group performance status 0-2. Patients received 28-day cycles of tafasitamab (12 mg/kg intravenously), once weekly during cycles 1-3, then every 2 weeks during cycles 4-12. Lenalidomide (25 mg orally) was administered on days 1-21 of cycles 1-12. After cycle 12, progression-free patients received tafasitamab every 2 weeks until disease progression. The primary endpoint was best objective response rate. After ≥35 months’ follow-up (data cut-off: October 30, 2020), the objective response rate was 57.5% (n=46/80), including a complete response in 40.0% of patients (n=32/80) and a partial response in 17.5% of patients (n=14/80). The median duration of response was 43.9 months (95% confidence interval [95% CI]: 26.1-not reached), the median overall survival was 33.5 months (95% CI: 18.3-not reached) and the median progression-free survival was 11.6 months (95% CI: 6.3-45.7). There were no unexpected toxicities. Subgroup analyses revealed consistent long-term efficacy results across most subgroups of patients. This extended follow-up of L-MIND confirms the long duration of response, meaningful overall survival, and well-defined safety profile of tafasitamab plus lenalidomide followed by tafasitamab monotherapy in patients with relapsed/refractory diffuse large B-cell lymphoma ineligible for autologous stem cell transplantation. ClinicalTrials.gov identifier: NCT02399085

    Molecular and functional profiling identifies therapeutically targetable vulnerabilities in plasmablastic lymphoma

    Get PDF
    B-cell lymphoma; Cancer geneticsLinfoma de células B; Genética del cáncerLimfoma de cèl·lules B; Genètica del càncerPlasmablastic lymphoma (PBL) represents a rare and aggressive lymphoma subtype frequently associated with immunosuppression. Clinically, patients with PBL are characterized by poor outcome. The current understanding of the molecular pathogenesis is limited. A hallmark of PBL represents its plasmacytic differentiation with loss of B-cell markers and, in 60% of cases, its association with Epstein-Barr virus (EBV). Roughly 50% of PBLs harbor a MYC translocation. Here, we provide a comprehensive integrated genomic analysis using whole exome sequencing (WES) and genome-wide copy number determination in a large cohort of 96 primary PBL samples. We identify alterations activating the RAS-RAF, JAK-STAT, and NOTCH pathways as well as frequent high-level amplifications in MCL1 and IRF4. The functional impact of these alterations is assessed using an unbiased shRNA screen in a PBL model. These analyses identify the IRF4 and JAK-STAT pathways as promising molecular targets to improve outcome of PBL patients.Open Access funding enabled and organized by Projekt DEAL

    Detection of early seeding of Richter transformation in chronic lymphocytic leukemia

    Get PDF
    B-cell lymphoma; Cancer epigenetics; Chronic lymphocytic leukaemiaLinfoma de células b; Epigenética del cáncer; Leucemia linfocítica crónicaLimfoma de cèl·lules b; Epigenètica del càncer; Leucèmia limfocítica crònicaRichter transformation (RT) is a paradigmatic evolution of chronic lymphocytic leukemia (CLL) into a very aggressive large B cell lymphoma conferring a dismal prognosis. The mechanisms driving RT remain largely unknown. We characterized the whole genome, epigenome and transcriptome, combined with single-cell DNA/RNA-sequencing analyses and functional experiments, of 19 cases of CLL developing RT. Studying 54 longitudinal samples covering up to 19 years of disease course, we uncovered minute subclones carrying genomic, immunogenetic and transcriptomic features of RT cells already at CLL diagnosis, which were dormant for up to 19 years before transformation. We also identified new driver alterations, discovered a new mutational signature (SBS-RT), recognized an oxidative phosphorylation (OXPHOS)high–B cell receptor (BCR)low-signaling transcriptional axis in RT and showed that OXPHOS inhibition reduces the proliferation of RT cells. These findings demonstrate the early seeding of subclones driving advanced stages of cancer evolution and uncover potential therapeutic targets for RT.The authors thank the Hematopathology Collection registered at the Biobank of Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and the Biobank HUB-ICO-IDIBELL (PT20/00171) for sample procurement, S. Martín, F. Arenas, the Genomics Core Facility of the IDIBAPS, CNAG Sequencing Unit, Mission Bio, Omniscope and Barcelona Supercomputing Center for the technical support and the computer resources at MareNostrum4 (RES activity, BCV-2018-3-0001). This study was supported by the la Caixa Foundation (CLLEvolution-LCF/PR/HR17/52150017, Health Research 2017 Program HR17-00221, to E.C.), the European Research Council under the European Union’s Horizon 2020 Research and Innovation Program (810287, BCLLatlas, to E.C., J.I.M.-S., H.H. and I.G.), the Instituto de Salud Carlos III and the European Regional Development Fund Una Manera de Hacer Europa (PMP15/00007 to E.C. and RTI2018-094584-B-I00 to D.C.), the American Association for Cancer Research (2021 AACR-Amgen Fellowship in Clinical/Translational Cancer Research, 21-40-11-NADE to F.N.), the European Hematology Association (EHA Junior Research Grant 2021, RG-202012-00245 to F.N.), the Lady Tata Memorial Trust (International Award for Research in Leukaemia 2021-2022, LADY_TATA_21_3223 to F.N.), the Generalitat de Catalunya Suport Grups de Recerca AGAUR (2017-SGR-1142 to E.C., 2017-SGR-736 to J.I.M.-S. and 2017-SGR-1009 to D.C.), the Accelerator award CRUK/AIRC/AECC joint funder partnership (AECC_AA17_SUBERO to J.I.M.-S.), the Fundació La Marató de TV3 (201924-30 to J.I.M.-S.), the Centro de Investigación Biomédica en Red Cáncer (CIBERONC; CB16/12/00225, CB16/12/00334, CB16/12/00236), the Ministerio de Ciencia e Innovación (PID2020-117185RB-I00 to X.S.P.), the Fundación Asociación Española Contra el Cáncer (FUNCAR-PRYGN211258SUÁR to X.S.P.), the Associazione Italiana per la Ricerca sul Cancro Foundation (AIRC 5 × 1,000 no. 21198 to G.G.) and the CERCA Programme/Generalitat de Catalunya. H.P.-A. is a recipient of a predoctoral fellowship from the Spanish Ministry of Science, Innovation and Universities (FPU19/03110). A.D.-N. is supported by the Department of Education of the Basque Government (PRE_2017_1_0100). E.C. is an Academia Researcher of the Institució Catalana de Recerca i Estudis Avançats of the Generalitat de Catalunya. This work was partially developed at the Center Esther Koplowitz (Barcelona, Spain)

    Real-world evidence of tisagenlecleucel for the treatment of relapsed or refractory large B-cell lymphoma

    Get PDF
    Recerca clínica del càncer; Càncer hematològic; Limfoma no HodgkinInvestigación clínica del cáncer; Cáncer hematológico; Linfoma no HodgkinClinical cancer research; Hematological cancer; Non-Hodgkin's lymphomaTisagenlecleucel (tisa-cel) is a second-generation autologous CD19-targeted chimeric antigen receptor (CAR) T-cell therapy approved for relapsed/refractory (R/R) large B-cell lymphoma (LBCL). The approval was based on the results of phase II JULIET trial, with a best overall response rate (ORR) and complete response (CR) rate in infused patients of 52% and 40%, respectively. We report outcomes with tisa-cel in the standard-of-care (SOC) setting for R/R LBCL. Data from all patients with R/R LBCL who underwent leukapheresis from December 2018 until June 2020 with the intent to receive SOC tisa-cel were retrospectively collected at 10 Spanish institutions. Toxicities were graded according to ASTCT criteria and responses were assessed as per Lugano 2014 classification. Of 91 patients who underwent leukapheresis, 75 (82%) received tisa-cel therapy. Grade 3 or higher cytokine release syndrome and neurotoxicity occurred in 5% and 1%, respectively; non-relapse mortality was 4%. Among the infused patients, best ORR and CR were 60% and 32%, respectively, with a median duration of response of 8.9 months. With a median follow-up of 14.1 months from CAR T-cell infusion, median progression-free survival and overall survival were 3 months and 10.7 months, respectively. At 12 months, patients in CR at first disease evaluation had a PFS of 87% and OS of 93%. Patients with an elevated lactate dehydrogenase showed a shorter PFS and OS on multivariate analysis. Treatment with tisa-cel for patients with relapsed/refractory LBCL in a European SOC setting showed a manageable safety profile and durable complete responses

    Immunological and genetic kinetics from diagnosis to clinical progression in chronic lymphocytic leukemia

    Get PDF
    Progressió clínica; Evasió immuneProgresión clínica; Evasión inmuneClinical progression; Immune evasionBackground Mechanisms driving the progression of chronic lymphocytic leukemia (CLL) from its early stages are not fully understood. The acquisition of molecular changes at the time of progression has been observed in a small fraction of patients, suggesting that CLL progression is not mainly driven by dynamic clonal evolution. In order to shed light on mechanisms that lead to CLL progression, we investigated longitudinal changes in both the genetic and immunological scenarios. Methods We performed genetic and immunological longitudinal analysis using paired primary samples from untreated CLL patients that underwent clinical progression (sampling at diagnosis and progression) and from patients with stable disease (sampling at diagnosis and at long-term asymptomatic follow-up). Results Molecular analysis showed limited and non-recurrent molecular changes at progression, indicating that clonal evolution is not the main driver of clinical progression. Our analysis of the immune kinetics found an increasingly dysfunctional CD8+ T cell compartment in progressing patients that was not observed in those patients that remained asymptomatic. Specifically, terminally exhausted effector CD8+ T cells (T-betdim/−EomeshiPD1hi) accumulated, while the the co-expression of inhibitory receptors (PD1, CD244 and CD160) increased, along with an altered gene expression profile in T cells only in those patients that progressed. In addition, malignant cells from patients at clinical progression showed enhanced capacity to induce exhaustion-related markers in CD8+ T cells ex vivo mainly through a mechanism dependent on soluble factors including IL-10. Conclusions Altogether, we demonstrate that the interaction with the immune microenvironment plays a key role in clinical progression in CLL, thereby providing a rationale for the use of early immunotherapeutic intervention.This work was supported by the Instituto de Salud Carlos III, Fondo de Investigaciones Sanitarias (PI17/00950, M.C., PI18/01392, P.A. and PI17/00943, F.B.) and co-financed by the European Regional Development Fund (ERDF) and Fundación Asociación Española Contra el Cáncer (M.C. and P.A.), Gilead Fellowships (GLD16/00144, GLD18/00047, F.B.) and Fundació la Marató de TV3 (201905–30-31 F.B). S.B. is the recipient of a postdoctoral fellowship from Fundación Alfonso Martin Escudero. R.V-M. is supported by a Torres Quevedo fellowship from the Spanish Ministry of Science and Innovation (PTQ-16-08623). A.E-C. is funded by ISCIII/MINECO (PT17/0009/0019) which is co-funded by FEDER. M.C. holds a contract from Ministerio de Ciencia, Innovación y Universidades (RYC-2012-2018)

    Cell free circulating tumor DNA in cerebrospinal fluid detects and monitors central nervous system involvement of B-cell lymphomas

    Get PDF
    Limfoma no Hodgkin agressiu; Limfoma del SNCLinfoma no Hodgkin agresivo; Linfoma del SNCAggressive Non-Hodgkin's Lymphoma; CNS lymphomaThe levels of cell free circulating tumor DNA (ctDNA) in plasma correlated with treatment response and outcome in systemic lymphomas. Notably, in brain tumors, the levels of ctDNA in the cerebrospinal fluid (CSF) are higher than in plasma. Nevertheless, their role in central nervous system (CNS) lymphomas remains elusive. We evaluated the CSF and plasma from 19 patients: 6 restricted CNS lymphomas, 1 systemic and CNS lymphoma, and 12 systemic lymphomas. We performed whole exome sequencing or targeted sequencing to identify somatic mutations of the primary tumor, then variant-specific droplet digital PCR was designed for each mutation. At time of enrolment, we found ctDNA in the CSF of all patients with restricted CNS lymphoma but not in patients with systemic lymphoma without CNS involvement. Conversely, plasma ctDNA was detected in only 2/6 patients with restricted CNS lymphoma with lower variant allele frequencies than CSF ctDNA. Moreover, we detected CSF ctDNA in 1 patient with CNS lymphoma in complete remission and in 1 patient with systemic lymphoma, 3 and 8 months before CNS relapse was confirmed; indicating CSF ctDNA might detect CNS relapse earlier than conventional methods. Finally, in 2 cases with CNS lymphoma, CSF ctDNA was still detected after treatment even though a complete decrease in CSF tumor cells was observed by flow cytometry (FC), indicating CSF ctDNA better detected residual disease than FC. In conclusion, CSF ctDNA can better detect CNS lesions than plasma ctDNA and FC. In addition, CSF ctDNA predicted CNS relapse in CNS and systemic lymphomas.This work was supported by research funding from Fundación Asociación Española contra el Cáncer (AECC) (to JS, MC and PA); FERO (to JS), laCaixa (to JS), BBVA (CAIMI) (to JS), the Instituto de Salud Carlos III, Fondo de Investigaciones Sanitarias (PI16/01278 to JS; PI17/00950 to MC; PI17/00943 to FB) cofinanced by the European Regional Development Fund (ERDF) and Gilead Fellowships (GLD16/00144, GLD18/00047, to FB). MC holds a contract from Ministerio de Ciencia, Innovación y Universidades (RYC-2012-12018). SB received funding from Fundación Alfonso Martin Escudero. LE received funding from the Juan de la Cierva fellowship. We thank CERCA Programme / Generalitat de Catalunya for institutional support

    Determinacions del perfil genètic de les malalties neoplàstiques hematològiques

    Get PDF
    Malalties neoplàstiques hematològiques; Perfil genètic; PrecisióEnfermedades neoplásticas hematológicas; Perfil genético; PrecisiónHematological neoplastic diseases; Genetic profile; AccuracyLa patologia hematooncològica s’ha dividit en tres grups: limfoide, mieloide i leucèmia aguda limfoblàstica. S’ha definit la llista de gens adequada per a cada patologia i tots ells han estat seleccionats atenent a: La seva utilitat diagnòstica i de diagnòstic diferencial amb altres entitats i que, per tant, permetin a l’equip diagnòstic (hematòlegs, patòlegs o biòlegs) realitzar un diagnòstic ben fet. La seva utilitat pronòstica i predictiva, sempre que això comporti un canvi d’actitud terapèutica. Per exemple, indicació de trasplantament de progenitors o altres teràpies cel·lulars, canvi en el seguiment i canvi en el tipus de tractament. La seva utilitat terapèutica per a la indicació de l’ús de fàrmacs diana

    Determinacions del perfil genètic de les malalties neoplàstiques hematològiques

    Get PDF
    Malalties neoplàstiques hematològiques; Perfil genètic; PrecisióEnfermedades neoplásticas hematológicas; Perfil genético; PrecisiónHematological neoplastic diseases; Genetic profile; AccuracyLa patologia hematooncològica s’ha dividit en tres grups: limfoide, mieloide i leucèmia aguda limfoblàstica. S’ha definit la llista de gens adequada per a cada patologia i tots ells han estat seleccionats atenent a: La seva utilitat diagnòstica i de diagnòstic diferencial amb altres entitats i que, per tant, permetin a l’equip diagnòstic (hematòlegs, patòlegs o biòlegs) realitzar un diagnòstic ben fet. La seva utilitat pronòstica i predictiva, sempre que això comporti un canvi d’actitud terapèutica. Per exemple, indicació de trasplantament de progenitors o altres teràpies cel·lulars, canvi en el seguiment i canvi en el tipus de tractament. La seva utilitat terapèutica per a la indicació de l’ús de fàrmacs diana

    Expanding the Diversity at the C-4 Position of Pyrido[2,3-d]pyrimidin-7(8H)-ones to Achieve Biological Activity against ZAP-70

    Get PDF
    Cross-coupling; Tyrosine kinase inhibitorsAcoblament creuat; Inhibidors de la tirosina quinasaAcoplamiento cruzado; Inhibidores de la tirosina quinasaPyrido[2,3-d]pyrimidin-7(8H)-ones have attracted widespread interest due to their similarity with nitrogenous bases found in DNA and RNA and their potential applicability as tyrosine kinase inhibitors. Such structures, presenting up to five diversity centers, have allowed the synthesis of a wide range of differently substituted compounds; however, the diversity at the C4 position has mostly been limited to a few substituents. In this paper, a general synthetic methodology for the synthesis of 4-substituted-2-(phenylamino)-5,6-dihydropyrido[2,3-d]pyrimidin-7(8H)-ones is described. By using cross-coupling reactions, such as Ullmann, Buchwald–Hartwig, Suzuki–Miyaura, or Sonogashira reactions, catalyzed by Cu or Pd, we were able to describe new potential biologically active compounds. The resulting pyrido[2,3-d]pyrimidin-7(8H)-ones include N-alkyl, N-aryl, O-aryl, S-aryl, aryl, and arylethynyl substituents at C4, which have never been explored in connection with the biological activity of such heterocycles as tyrosine kinase inhibitors, in particular as ZAP-70 inhibitors.This research has been funded by Instituto de Salud Carlos III through the project “PI18/01392” (Co-funded by European Regional Development Fund “A way to make Europe”)
    corecore