A RTl C L E W) Check for updates

Molecular and functional profiling identifies
therapeutically targetable vulnerabilities in
plasmablastic lymphoma
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Plasmablastic lymphoma (PBL) represents a rare and aggressive lymphoma subtype fre-
quently associated with immunosuppression. Clinically, patients with PBL are characterized
by poor outcome. The current understanding of the molecular pathogenesis is limited. A
hallmark of PBL represents its plasmacytic differentiation with loss of B-cell markers and, in
60% of cases, its association with Epstein-Barr virus (EBV). Roughly 50% of PBLs harbor a
MYC translocation. Here, we provide a comprehensive integrated genomic analysis using
whole exome sequencing (WES) and genome-wide copy number determination in a large
cohort of 96 primary PBL samples. We identify alterations activating the RAS-RAF, JAK-
STAT, and NOTCH pathways as well as frequent high-level amplifications in MCLT and IRF4.
The functional impact of these alterations is assessed using an unbiased shRNA screen in a
PBL model. These analyses identify the IRF4 and JAK-STAT pathways as promising molecular
targets to improve outcome of PBL patients.

A full list of author affiliations appears at the end of the paper.
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lasmablastic lymphoma (PBL) was first described in 1997

by Delecluse et al. and represents a distinct entity in the

WHO cdlassification of lymphoid tissues’:2. PBL is char-
acterized by unfavorable outcome®* and occurs typically at
extranodal sites, predominantly the oral cavity and the gastro-
intestinal tract®. It is frequently associated with immunosup-
pression and patients are commonly infected by the human
immunodeficiency virus (HIV)16. However, PBL also affects
immunocompetent patients. PBLs are thought to arise from post
germinal center B-cells that are in the transition towards plasma
cell differentiation. Hence, a hallmark of PBL represents the loss
of typical B-cell antigens, while plasma cell markers are strongly
expressed”.

Our current understanding of the molecular pathogenesis in
PBL is very limited, but in 60% of cases, PBL cells are infected by
the Epstein-Barr virus (EBV)®7. Roughly 50% of PBL cases har-
bor MYC translocations that usually rearrange MYC to the heavy
chain immunoglobulin locus suggesting an essential role of MYC
in the biology of PBL. Recently, a small study using targeted
sequencing identified PRDM1, STAT3, BRAF, and EP300 muta-
tions in primary PBL samples®, whereas another analysis focused
on HIV-associated PBL that revealed recurrent mutations of the
JAK-STAT pathway®. However, due to the small sample size
respectively the focus on HIV positive PBL, the landscape of
genetic aberrations in PBL, and the exact functional role of these
abnormalities in the molecular pathogenesis of PBL remain lar-
gely unknown. To improve the outcome of PBL patients a sig-
nificantly better understanding of the biology is warranted.

In this work, we perform a comprehensive genomic analysis
describing the mutational landscape of the entire exome and
genome-wide somatic copy number alterations (SCNAs) in PBL.
We reveal recurrent genetic alterations affecting the RAS-RAF,
JAK-STAT, MCLI, IRF4, and NOTCH pathways as PBL defining
molecular markers and potential therapeutic targets.

Results

Histology, immunohistochemistry, and fluorescence in situ
hybridization. We collected 96 formalin-fixed and paraffin-
embedded (FFPE) primary PBL samples (Supplementary Fig. 1a,
b, ¢). For all selected cases the diagnostic criteria according to the
WHO classification of 2017 were fulfilled and confirmed in a
central pathology review by a panel of expert hematopathologists.

As expected, 86% (82/95) of PBLs in our cohort did not express
the B-cell antigen CD20, while the remaining 14% (13/95)
showed weak and inconsistent expression. Of all cases, 57% (55/
96) exhibited latently EBV-infected tumor cells, while 33% (17/
52) of patients with available HIV infection status were HIV
positive. EBV positive PBL cases were not associated with special
morphologic PBL subtypes compared to EBV negative cases (data
not shown).

Sixty-eight cases were assembled on a tissue microarray to
uniformly perform immunohistochemical staining for selected
markers (Supplementary Fig. 1a and Supplementary Data 1). All
cases exhibited strong reactivity of the plasma cell marker IRF4
(68/68). The proliferation index Ki-67 was high with a median
value of 80% (range: 30-100%). To determine the frequency of
MYC translocations, we performed fluorescence in situ hybridi-
zation (FISH) using an MYC dual color break-apart rearrange-
ment probe (BAP) in 57 evaluable cases (Supplementary Fig. 2a)
and an MYC-IgH fusion probe (FP) in 63 cases (Supplementary
Fig. 2b). In total, 47% (28/60) of cases harbored an MYC
translocation, determined by positivity for BAP and/or FP. Since
35% of MYC-BAP positive cases (8/23) were negative for MYC-
FP, about one third of cases translocated MYC to a non-IgH
partner (Supplementary Data 1). The MYC translocation status

was associated with a significantly higher Ki-67 index

(p=8x 104, one-tailed two-sample t-test).

Mutational landscape of PBL. To characterize the mutational
landscape of PBL, we performed WES in 85 primary PBL cases
(Supplementary Fig. 1a, b, ¢). An overview of our analysis pipe-
line is provided in Supplementary Fig. 3. We obtained a median
effective coverage for all samples and all exons of 80 reads
(Supplementary Fig. 4). After variant discovery and filtering (for
details see methods), we called somatic mutations with an average
of 3.48 variants per Mb and sample, placing PBL among other
cancer entities with moderate to high tumor mutational burden
(TMB) (Supplementary Data 2 and Supplementary Fig. 5). After
detecting somatic mutations in individual samples, we aimed to
identify recurrently mutated putative cancer candidate genes
(CCGs) and applied to this end the MutSig2CV algorithm (for
details see Methods). This analysis revealed 15 CCGs (¢ <0.1,
cohort frequency >5%; Fig. la, Supplementary Fig. 6, and Sup-
plementary Data 3, 4).

Recurrent mutations affected the RAS-RAF pathway. The
oncogene NRAS was the most frequently mutated gene in 31% of
cases (Fig. 1a). All NRAS variants were missense mutations and—
except one—occurred exclusively at the known hotspot residues
p-G12, p.G13, and p.Q61 (Fig. 1b). Mutations of KRAS and HRAS
occurred in 11% and 2% of cases, respectively (Fig. la and
Supplementary Data 4). NRAS and KRAS mutations were
mutually exclusive. BRAF mutations were found in 6% of cases
and were all located in the kinase protein domain (Fig. 1b, ¢).
Altogether 47% (40/85) of PBL samples displayed a RAS or BRAF
mutation (Fig. 1d). The majority of detected mutations were
clonal, indicating their role as initial oncogenic driver genes
(Fig. 1a).

We additionally detected recurrent mutations activating the
JAK-STAT pathway. Most frequently, we found STAT3 muta-
tions in 25% of PBL cases (Fig. 1a). Virtually all STAT3 mutations
clustered in the SH2 domain that is essential for dimerization and
activation of STAT319, including the p.D661 and p.Y640 residues
that were affected in 33% (7/21) and 24% (5/21) of cases,
respectively (Fig. 1b, c). Roughly 50% of the detected STAT3
mutations were clonal underlining their role as CCGs (Fig. 1a).
Notably, STAT3 mutations occurred in only 10% (3/31) of HIV
negative patients, but in 47% (7/15) of HIV infected individuals
(p=0.003, g=0.043, Wilcoxon test; Supplementary Data 5),
suggesting a pathogenetic role of STAT3 mutations especially in
HIV-associated PBL. JAKI-3 missense mutations occurred in 5%
(4/85) of cases, while genes encoding the JAK-STAT inhibiting
proteins SOCS1 and/ or SOCS3 were mutated in 12% (10/85) of
samples at multiple sites spanning the entire open reading frame
suggesting loss of function. These alterations did not occur in a
mutually exclusive fashion, as 29% of PBLs with STAT3 mutation
(6/21) harbored concomitant alterations of JAKI1-3, SOCS1/3, or
PIAS3. Altogether 35% of PBL cases (30/85) harbored mutations
affecting the JAK-STAT pathway (Fig. 1d).

In 26% (22/85) of samples mutations affecting genes encoding
for components of the NOTCH signaling pathway were
detectable, including mutations in SPEN (8%), NOTCHI (7%),
NOTCH4 (6%), DTX1 (3%), NOTCH2 (1%), and NOTCH3 (1%)
indicating a role of NOTCH signaling in the molecular
pathogenesis of PBL (Supplementary Data 4 and Fig. 1d).

In addition, we found several genetic alterations inactivating
tumor suppressor genes. TP53 mutations were frequent and
occurred in 14% of PBL cases (Fig. 1a). These mutations clustered
particularly in the DNA binding domain (exons 5 to 8)
(Supplementary Fig. 7a). Interestingly, only 27% of TP53
mutations were clonal suggesting that the majority of TP53
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Fig. 1 Landscape of somatic mutations in PBL determined by WES. a All called non-synonymous mutations in significant genes according to MutSig2CV
v3.11T (gmacy < 0.1, cohort frequency >5%) are color-coded and shown for each PBL sample per column, ranked by cohort frequency (see Supplementary
Data 3 and 4 for all results). Samples are ordered by waterfall sorting based on binary gene mutation status. The bar graph on the left shows the ratio of
non-synonymous (blue) and synonymous (green) mutations per gene. At the top, the TMB per sample (mutations/sample/Mb) is depicted. On the right,
occurring types of mutation and g values (M2CV) are shown per gene. For each gene, the CCF (fraction of cancer cells having a mutation in at least one
allele) was estimated for samples with corresponding copy number measurement (median in red). Clonality was assumed for CCF >0.9. The percentage of
samples with clonal mutations is indicated per gene. b The distribution of detected mutations on protein level for the selected CCGs NRAS (NM_002524),
KRAS (NM_033360), BRAF (NM_004333), and STAT3 (NM_139276). Exon boundaries are indicated using dashed lines. ¢ Spatial clustering of mutations
within the protein structures of BRAF (PDB 6nyb)®> and STAT3 (PDB 6njs)2¢. d Co-occurrence of mutations belonging to selected biological pathways. For
each analyzed pathway, samples are presented in their corresponding waterfall sort order by binary gene mutation status. Copy number (CN) and

translocation status (SV) are depicted for TP53 and MYC, respectively.
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mutations represent a later pathogenic event (Fig. la). TP53
mutations occurred in 6% of EBV positive lymphoma cases (3/
47), while EBV negative PBLs harbored TP53 mutations in 24%
(9/38) (p=0.011, ¢=0.193, Wilcoxon test; Supplementary
Data 5). In 70% of samples with TP53 mutation and available
copy number status (7/10) we detected concomitant loss of the
alternate allele leading to biallelic inactivation (Fig. 1d). The
TP53-stabilizing gene ATM harbored missense and frameshift
mutations in 8% of cases, which were mutually exclusive to TP53
mutations. We also identified mutations in the tumor suppressor
KLHLG6 in 8% (Supplementary Fig. 7b). As previously reported in
other lymphoma subtypes, in 86% (6/7) of PBL cases with
identified KLHL6 mutations the mutations clustered in the
hotspot domain BTB, possibly leading to a dissociation of KLHL6
and cullin3 that form a functional cullin-RING ubiquitin ligase.
KLHL6 mutations have been described to disrupt this ligase
function and to contribute to the growth of diffuse large B-cell
lymphoma (DLBCL) cells in vitro and in vivoll-13.

Several genes encoding epigenetic regulators were identified
among the potential CCGs such as the tumor suppressor TET2
that harbored inactivating missense, nonsense, or frameshift
mutations in 12% (Fig. 1a and Supplementary Fig. 7c). The genes
encoding the methyltransferases KMT2A and KMT2D exhibited
mutations in 8% and 6%, respectively (Supplementary Data 4).

Finally, we identified MYC mutations in 9% of cases that were
predominantly subclonal (Fig. 1a and Supplementary Fig. 7d). Of
note, 27% (7/26) of MYC translocated cases were concomitantly
mutated, while untranslocated cases did not display a mutation
(0/32) (p =0.001, g = 0.017, Wilcoxon test, Supplementary Data 5
and Fig. 1d) suggesting that MYC mutations originate from
somatic hypermutation!4,

To test the specificity of variant filtering, we systematically
compared the results of PBL cases with matched normal (n =22)
vs. PBL cases without available paired normal tissue (n=63)
(Supplementary Figs. 8 and 9). The median TMB per megabase
was 1.87 for PBL cases with paired normal vs. 3.58 for PBL cases
without. However, comparing top-mutated genes (frequency
>10%) and adjusting for multiple hypothesis testing, MUC4 was
the only gene being significantly more frequently mutated in the
cohort of PBL samples without matched normal (p=0.0004,
q = 0.0194, Wilcoxon test; Supplementary Data 5). This indicates
that our filtering strategy allows for sufficiently specific calling of
somatic mutations in top-mutated genes even for patient samples
without available paired normal tissue.

We next validated our results using amplicon-based deep targeted
resequencing for the selected CCGs NRAS, KRAS, BRAF, STATS3,
TP53, and TET2 in 54 primary PBL samples of our study cohort for
which sufficient DNA was available. Forty-eight of 49 mutations
(98%) called by WES were independently confirmed. For nine cases,
the wildtype status determined by WES was confirmed. Eleven
variants detected by targeted resequencing had also been discovered
by WES but subsequently filtered out as germline variants or as an
artifact. Ten further identified variants had an allele frequency (AF)
below our defined threshold of 10%. A total of nine mutations (three
mutations with AF 10-16% and six mutations with a higher AF)
were additionally revealed by targeted resequencing suggesting that
the mutational cohort frequencies might be slightly underestimated
due to a lower effective coverage for single genomic sites using WES
(Supplementary Data 6). Specifically, when combining results of
targeted resequencing and WES, STAT3 mutation frequency
increased from 25% (21/85) to 28% (24/85), for TP53 from 14%
(12/85) to 18% (15/85), and for KRAS from 11% (9/85) to 12% (10/
85). In contrast, no additional NRAS, BRAF, or TET2 mutations were
discovered using targeted resequencing. Overall, only 5.2% of all
covered genomic regions showed less than 20 reads of effective
coverage in WES (Supplementary Fig. 4).

Recurrent somatic copy number alterations in PBL. Using the
Oncoscan platform, we next analyzed 82 PBL samples for copy
number alterations and identified SCNAs using GISTIC v2.0.231>
(Fig. 2 and Supplementary Data 7, 8). Of those, 16% (13/82)
displayed polyploidy as determined by ASCAT!®. Arm-level
amplifications affected particularly chromosomes 1q, 7p, and 7q
and were detectable in 42%, 32%, and 33% of cases, respectively
(Fig. 2a). Additionally, we found various focal amplifications with
1q23.1 being the most specific identified in 61% of samples. This
region contained only the genes encoding the Fc receptor-like
proteins (FCRL1-5) and CD5L (qga.0 = 3.7 x 1073%). FCRL1-5 are
known to regulate B-cell development and differentiation!”. A
wider amplification in 1q21.3 affected 60 genes and occurred in
52% of samples (gga0=3x 10~4). Within this aberration, we
identified the antiapoptotic gene MCLI that represents a drug-
gable molecular target!8. 6p25.3 was focally amplified in 29% of
PBL cases and comprised only four genes including IRF4
(4Ga.o =64 x 1079). The corresponding minimal common region
(MCR) and the extended peak interval are shown in Fig. 2b. In
32%, we found an amplification of 8q24.13 containing TRIBI
(9G2.0 = 6.7 x 107°) that is also amplified in acute myeloid leu-
kemia (AML) and is known to induce MEK1/ ERK signaling!®.
An amplification of 17q22 comprising the oncogene MSI2 was
detectable in 21% of cases. MSI2 has been reported to be over-
expressed in AML and to contribute to poor survival?0. Finally,
we detected recurrent amplifications of 11q23.3 affecting KMT2A
that was also recurrently altered by mutations as described above.

Deletions occurred generally less frequently than amplifications
(Fig. 2c¢). Recurrent arm-level deletions affected chromosomes
13q, 17p, 18p, and 18q and were detectable in 17%, 26%, 18%,
and 16% of cases, respectively.

Focusing on focal genetic lesions, we identified deletions at
1p22.1 affecting the gene encoding the potential tumor
suppressor RPL5 (g0 =3 % 1073) in 24% of cases. Besides, we
detected focal deletion of 4q35.2 and 6q26 in 26% and 25% of
cases involving the tumor suppressor genes FATI (ggao=3 X
1073) and PRKN (g0 = 2 x 1073), respectively.

IPI and EBYV status dictate survival in patients with PBL. For
49 PBL patients, we were able to obtain corresponding clinical
data (Supplementary Data 1). As summarized in Supplementary
Table 1, 69% of patients were male and their median age at
diagnosis was 62 years. Nine patients (22%) showed a high-risk
International Prognostic Index (IPI) while 19 patients (46%)
belonged to the intermediate and 13 patients (32%) to the low IPI
risk group, respectively. With a median follow-up of 21.5 months,
patients showed a 2-year overall survival (OS) of 61% (Fig. 3a).
82% of patients were treated with a CHOP-like regimen. As
expected, the IPI provided a risk stratification with the high-risk
group being characterized by a poor 2-year OS of only 11%
(Fig. 3b; p = 6.1 x 107 for IPI low/intermediate vs. IPI high, log
rank test).

Next, we investigated whether selected genetic alterations and/
or clinical parameters (Supplementary Data 9) influence the
prognosis of affected patients. We examined the lymphoma-
specific survival (LSS) in order to exclude potential bias of
disease-unrelated death causes and we focused on patients who
received CHOP-like chemotherapy to ensure that unfavorable
outcome was not simply due to inefficient treatment approaches.
False discovery rates (FDR) were calculated for preselected
biological conditions. Patients with EBV negative PBL showed a
significantly inferior LSS compared to patients with EBV positive
disease (p = 0.002, g = 0.013, log rank test; Fig. 3c). As described
above, we detected that negative EBV status correlates with TP53
mutation. Despite a very low number of cases, patients with TP53
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genes within significant focal lesions are highlighted with corresponding cohort frequencies. b Pileup plot depicting the number of primary PBL samples
with copy number amplifications at the beginning of chromosome 6 (cytoband 6p25.3). The minimal common region (MCR) determined by GISTIC and
the robustly extended peak region is highlighted in green. Contained genes are labeled. The MCR starts with the first available SNP probe (marked by red
crosses) on the chromosomal arm while only noncoding genes LOC285766 and LINCO0266-3 are located left in the extrapolated extended peak region
(striped). € Copy number deletions (blue) are correspondingly shown for each chromosome. See Supplementary Data 7 and 8 for all results.

mutated PBL showed a significantly inferior outcome compared
to patients with wild-type TP53 (p = 0.035, q = 0.140, log rank
test; Fig. 3d). Patients harboring NRAS mutations also showed a
trend towards unfavorable LSS (p =0.062, q=0.187, log rank
test; Fig. 3e). MYC translocation, MYC expression, and HIV
infection were not associated with LSS.

To investigate whether our approach selecting specific genetic
alterations and/or clinical parameters may have missed altera-
tions dictating survival, we performed an unbiased approach
using a Cox-regression model to calculate p values and hazard
ratios describing the clinical impact for all detected significant
genetic lesions (qumacv/Ga.o < 0.1) and clinical parameters (Fig. 3f).
Indeed, this analysis did not yield any additional genetic
alterations or clinical parameters that influenced survival
significantly in the context of multiple hypothesis testing but
confirmed our findings (Supplementary Data 9).

Genetic heterogeneity in PBL. To further understand the genetic
heterogeneity in PBL, we systematically compared the profiles of
recurrent mutations and SCNAs (g < 0.1, cohort frequency >5%)
for biologically defined subgroups. To this end we investigated the
following groups: HIV positive (n = 17) vs. HIV negative patients
(n = 35), EBV positive (n = 55) vs. EBV negative disease (n = 41),
HIV positive patients with EBV positive PBL (HIV 4 /EBV +,
n=15) vs. HIV positive patients with EBV negative PBL
(HIV + /EBV—, n = 2), HIV negative patients with EBV positive
PBL (HIV—/EBV +, n =17) vs. HIV negative patients with EBV
negative PBL (HIV—/EBV—, n = 18), MYC translocated (n = 28)
vs. MYC untranslocated PBL (n = 32), CD20 negative (n = 82) vs.
weakly CD20 positive PBL (n=13), PBL arising in the oral
cavity/pharynx (n=18) vs. PBL arising elsewhere (n=36),
patients with (n = 32) vs. without immunosuppression (n = 29),
patients with high IPI (n=9) vs. low/intermediate IPI (n = 32),

patients with LSS of less than 12 months (n = 8) vs. patients with
LSS of more than 24 months (n=15). We applied one-tailed
Wilcoxon rank-sum tests on available data for each selected
genetic lesion (Supplementary Data 5).

As described above, STAT3 mutations were significantly more
frequent in HIV positive compared to HIV negative patients
while recurrent amplifications and deletions did not significantly
differ. In patients with EBV negative PBL, we detected focal
deletions of 1p22.1 (46% vs. 11%, p =0.0007, g =0.0138) and
arm-level deletions of 13q (27% vs. 7%, p = 0.0045, g = 0.0423) as
characteristic genetic alterations in comparison to EBV positive
disease. We did not detect any significant differences in the
incidence of specific mutations. Possibly in part due to limited
case numbers, no significant differences were detectable in the
subgroup comparisons of HIV—/EBV + vs. HIV—/EBV— and
HIV 4 /EBV + vs. HIV + /EBV —.

In PBLs harboring an MYC translocation compared to non-
translocated cases, we detected a pattern of several focal
amplifications: 1q43 (58% vs. 21%, p=0.0122, q=0.0754),
2q31.3 (46% vs. 14%, p =0.0019, g = 0.0603), 11q23.3 (50% vs.
18%, p =0.0046, q =0.0619), 11q25 (46% vs. 14%, p =0.0122,
q=0.0754), 12p11.22 (42% vs. 14%, p =0.0060, g=0.0619).
Analyzing the mutational profiles, MYC was the only gene being
significantly more frequently mutated as described.

Comparing classically CD20 negative PBLs to weakly CD20
positive cases did not reveal any differences. In our cohort, we
identified 18 PBL cases with involvement of the oral cavity while
in 36 patients the oral cavity was not affected (Supplementary
Data 1). Interestingly, mutations of CFAP44 occurred signifi-
cantly more frequently in PBL arising in the oral cavity (27% vs.
0%, p=0.0016, q = 0.0268) while the distribution of SCNAs did
not differ.

Overall, 52% of PBL patients (32/61) suffered from immuno-
deficiency comprising HIV infection but also autoimmune
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Fig. 3 Survival analysis of PBL patients. Kaplan-Meier (KM) estimates showing a overall survival (OS) for all PBL patients with available follow-up (FU)
(n=49) and b OS according to IPI group (IPI low: O-1, IP| intermediate: 2-3, IPI high: 4-5). Lymphoma-specific survival (LSS) shown for PBL patients
treated with CHOP-like chemotherapy depending on ¢ EBV infection status of lymphoma (neg negative, pos positive), on d mutational status of TP53, and
e NRAS (wt wildtype, mut mutated). Corresponding p values of two-sided log rank tests are shown, for multiple hypothesis testing over preselected
conditions see Supplementary Data 9. f Hazard ratios by Cox regression and corresponding pcox values describing the impact of significant mutations,
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diseases, organ transplantation, or other viral infections such as
chronic hepatitis C infection (Supplementary Data 1). We
detected focal deletions of 4q35.2 (50% vs. 11%, p =0.0035,
q =10.0671) and broad deletions of 18p (33% vs. 4%, p = 0.0083,
q =0.0788) significantly more frequently in immunocompetent
compared to immunocompromised patients. Recurrent amplifi-
cations or mutations did not significantly differ.

Possibly also due to limited case numbers, we did not reveal
any significant differences comparing PBL patients with high IPI
vs. patients with low/intermediate IPI as well as comparing
patients with LSS of less than 12 months vs. patients with LSS of
more than 24 months.

Dissecting the IRF4 and STAT3 pathways in a plasmablastic
cell model. To functionally validate the identified oncogenic
drivers and to potentially detect previously unappreciated
dependencies that might guide targeted treatment approaches for
PBL patients, we performed an unbiased shRNA screen using a
customized shRNA library comprising 2669 different shRNAs
targeting 768 genes in the only available PBL cell line PBL-12L.
PBL-1 has been derived from an HIV positive PBL patient and
represents an adequate functional model showing the typical
plasmablastic immunophenotype and characteristic genetic
lesions?! (Supplementary Data 1, 4, and 8). Our shRNA screen
was performed in duplicates. After 12 days of shRNA induction,
shRNA abundance was determined by next generation sequen-
cing. The screen was conducted in the manner that cells
expressing shRNAs directed against oncogenes promoting cell
proliferation and cell survival are depleted from the cell popula-
tion. Our screen revealed that shRNAs directed against MYC (2
out of 2), IRF4 (4 out of 4), and STAT3 (1 out of 1) were among
the most significantly depleted shRNAs (Fig. 4a and Supple-
mentary Data 10). Since IRF4 and components of the JAK-STAT
pathway were recurrently activated by genetic alterations in our
PBL patient cohort, we focused on these two targets.

IRF4 protein expression was detectable in every sample of our
cohort and focal IRF4 amplifications were identified in 29% of
samples, both suggesting an involvement in the pathogenesis of
PBL. First, we confirmed the results of the shRNA screen using
two previously described and independent shRNAs2223, As
expected, both IRF4 shRNAs significantly downregulated IRF4
expression (Supplementary Fig. 10a). Transduction of these
shRNAs induced cytotoxicity in PBL-1 cell and in the DLBCL
cell lines OCI-Lyl0 from the activated B-cell subtype (ABC),
whereas germinal center B-cell-like (GCB) DLBCL models, used
as negative controls, were unaffected (Fig. 4b). These results
confirm an addiction to IRF4 signaling in PBL-1 cells. To utilize
this addiction therapeutically, we treated PBL-1 cells with
lenalidomide, previously been shown to downregulate IRF424.
Indeed, treatment with lenalidomide significantly downregulated
IRF4 expression (Fig. 4c) and induced toxicity in PBL-1 cells. As
previously shown, the viability of OCI-Lyl0 was significantly
inhibited by lenalidomide, but not in GCB DLBCL cells that were
used as negative controls** (Fig. 4d). These results suggest that
lenalidomide could be used therapeutically in PBL patients.

Next, we investigated the therapeutic potential of addiction to
the JAK-STAT pathway. As described in 25% of primary PBL
samples, PBL-1 cells also harbor a missense mutation of STAT3
within the SH2 domain (Supplementary Data 4) and PBL-1
represents an IL-6 dependent cell line?!. First, we confirmed the
results of the shRNA screen by two different shRNAs
(Supplementary Fig. 10b). In line with the screening data,
knockdown of STAT3 was selectively toxic to PBL-1 cells,
whereas control DLBCL cell lines were unaffected (Fig. 4e).
Consistently, the STAT3 antisense oligonucleotide AZD9150

induced significant toxicity specifically in PBL-1 cells, whereas
DLBCL control cells remained unaffected (Supplementary Fig. 10c
and Fig. 4f).

To analyze the functional consequences of the STAT3
mutations, we introduced either the p.D661Y STAT3 mutation
representing the most frequently detected STAT3 mutation in our
patient cohort or wild-type STAT3 in the GCB DLBCL cell line
HT that lacks constitutive STAT3 signaling. Expression of wild-
type STAT3 increased STAT3 signaling measured by phosphory-
lated STAT3 (pSTAT3) in Western blot to a significantly lesser
degree compared to the p.D661Y STAT3 mutation (Fig. 4g).
These results suggest that STAT3 mutations induce constitutive
STATS3 signaling, possibly by sensitizing STAT3 for upstream
activation. Next, we investigated whether PBL-1 cells require
signaling through the p.Q643R mutation for survival. To this end,
PBL-1 cells were retrovirally engineered to express either wild-
type or mutated STAT3 (p.Q643R) (Supplementary Fig. 10d). In
contrast to wild-type STAT3, p.Q643R STAT3 mutations rescued
PBL-1 cells partially from STAT3 shRNA-induced toxicity,
suggesting that PBL-1 cells are addicted to p.Q643R-induced
oncogenic signaling (Fig. 4h). Finally, we investigated whether
PBL-1 cells, despite harboring the activating STAT3 mutation,
still depended on an upstream stimulus?!. Removing interleukin-
6 (IL-6) from the medium led to a significant decrease of pSTAT3
measured by Western blotting indicating that cells harboring
STAT3 mutations still require an upstream signal (Fig. 4i).
Treating PBL-1 with the pan-JAK inhibitor tofacitinib led
correspondingly to a decrease of pSTAT3 levels (Fig. 4j) and
significantly decreased cell viability suggesting a potential
therapeutic use for PBL patients (Fig. 4k).

Discussion

Our study represents a comprehensive genetic analysis of a large
cohort of primary PBL samples of all subtypes. Several identified
genetic alterations represent directly targetable vulnerabilities that
might guide novel therapeutic strategies for PBL patients.
Roughly one half of PBL cases were characterized by recurrent
mutations of genes encoding components of the oncogenic RAS-
RAF signaling pathway. Detected NRAS mutations occurred
exclusively at the known hotspot residues p.G12, p.G13, and
p-Q61 representing gain of function mutations in various cancer
entities including multiple myeloma (MM)2>-27, Interestingly,
RAS mutations are rare in other aggressive lymphoma subtypes
such as DLBCL or Burkitt lymphoma?8-31. While direct targeting
of RAS proteins remains challenging, functional studies should
address the therapeutic potential of BRAF/MEK/ERK inhibition
or involved downstream pathways32. In MM, targeting the BRAF
V600E mutation seems to be promising®® and clinical trials
currently evaluate the combination of BRAF and MEK inhibitors
in affected patients.

While STAT3 mutations have been described in 40% of T-cell
large granular lymphocytic leukemia (T-LGL)34, in 30% of
chronic lymphoproliferative disorders of natural killer cells*®, and
in roughly 10% of subsets of T-cell lymphoma3®, STAT3 muta-
tions are rare in B-cell lymphomas?®37-38. Intriguingly, 25% of
analyzed PBL cases harbored STAT3 mutations that clustered
mainly in the SH2 domain that is essential for dimerization and
activation of STAT3!0. The identical mutational hotspots p.D661
and p.Y640 were previously detected in primary samples of
T-LGL34. In contrast, mutations of the JAK-STAT pathway have
not been recurrently detected in MM38-40, Qur functional ana-
lyses using an unbiased shRNA screen performed in the PBL cell
line PBL-1 showed that STAT3 indeed represents an attractive
molecular target. Our functional data suggest that STAT3 muta-
tions induce constitutive STAT3 signaling, possibly by sensitizing
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values * standard deviations are shown of three experiments. e Effect of STAT3 knockdown by two independent shRNAs on cell viability of PBL-1 cells over
time. Data were shown as means * standard deviations of three experiments. f Relative cell viability after treatment with increasing concentrations of the
STAT3 antisense oligonucleotide AZD9150 for 5 days. Data were shown as means + standard deviations of three experiments. g Phosphorylated STAT3
levels determined by WB following transduction with a control plasmid (empty), wild-type (wt) STAT3, and p.D661Y STAT3 cDNA in HT cells.
Representative results are shown of three independent experiments. h Exogenous expression of the p.Q643R STAT3 cDNA rescues PBL-1 cells from STAT3
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Data were shown as means + standard deviations of two experiments. i Phosphorylated STAT3 levels determined by WB in PBL-1 cells supplemented with
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treatment. Data were shown as means # standard deviations of three independent experiments. Source data for Fig. 4b-k are provided as a Source Data file.

STATS3 for upstream activation. Comparable functional studies
have been reported in T-LGL34. This might be a rationale for the
use of JAK inhibitors or IL-6-antagonists in the treatment of PBL
patients.

Our analyses in PBL subcohorts further showed that STAT3
mutations predominantly occur in HIV-associated PBLs as these
lymphomas harbored significantly more frequently STAT3
mutations compared to other PBL subtypes. In line with our data,
a recently published analysis of HIV-associated PBLs reported
STAT3 mutations at the same identified mutational hotspots in
42% of investigated cases’.

Another genetic hallmark of PBL represents MYC transloca-
tions that are detectable in roughly 50% of cases, corresponding
well to the previous reports’. MYC mutations occurred only in
translocated cases, probably due to somatic hypermutation!4,
while functional consequences still need to be elucidated.

Additionally, MYC might be activated through different mole-
cular mechanisms in PBL as the recurrently altered RAS-RAF,
JAK-STAT, IRF4, and NOTCH signaling pathways are known to
activate MYC as downstream target?2:23-41-44,

Our Oncoscan analyses identified recurrent SCNAs in PBL.
Specifically, we identified frequent broad alterations of chromo-
somes 1q and 7 as well as several specific focal aberrations. IRF4
was affected by focal amplifications of 6p25.3. Our shRNA screen
showed that shRNAs targeting IRF4 appeared among the most
toxic ones in our plasmablastic cell line model. Correspondingly,
treatment with lenalidomide, that has been shown to down-
regulate TRF4 expression?4, induced cytotoxicity in PBL-1 cells
confirming promising case reports using lenalidomide for the
treatment of patients with chemorefractory PBL4>46,

PBL can represent a diagnostic challenge. This includes the
differentiation from some MM cases. Osteolytic bone lesions and/
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or high paraprotein favor the diagnosis of MM while latent EBV
infection of lymphoma cells and HIV infection of affected
patients remain rare?’-48, Gains and amplifications of 1q and
chromosome 7, as well as deletions of chromosomes 13q, are
shared by both entities**>0, Multiple trisomies typical of the
hyperdiploid MM subtype were not detectable in PBL%°. The
highly characteristic amplification of IRF4 (6p25.3) has not yet
been reported in MM at a higher frequency, although myeloma
cells are functionally addicted to IRF4 signaling and transloca-
tions involving 6p25.3 have been described?3!. RAS mutations
have been recurrently detected in both entities, but frequent
mutations in MM such as FAM46C or DIS3 were uncommon in
our PBL cohort3?. At last, recurrent mutations of genes encoding
components of the JAK-STAT pathway have not been detected in
MM. These different aberrations might help in differentiating
PBL from MM in the future if tumor samples are analyzed for
these alterations in the clinical setting.

Even more difficult can be the distinction of PBL from extra-
medullary plasmablastic myeloma as they can be histologically
indistinguishable>2. For these rare cases, clinical parameters and
often the clinical course currently guide diagnosis and subsequent
therapy. Apart from very small studies, the genetic landscape of
plasmablastic myeloma is largely unknown. However, a small
targeted sequencing analysis identified alterations of MYC and of
genes encoding components of the RAS-RAF pathways, while
aberrations affecting the JAK-STAT signaling were not
detectable®3. Nevertheless, significantly larger and more com-
prehensive analyses are warranted to identify the molecular dif-
ferences and similarities between PBL and plasmablastic
myeloma.

For 49 patients we were able to obtain survival data enabling us
to investigate the impact of specific genetic aberrations on the
survival of affected patients. Our survival analyses revealed that
the IPI provides a valid risk stratification for PBL patients. High-
risk patients showed poor outcome following chemotherapy
suggesting that this patient subgroup is in special need of new
therapeutic approaches. Moreover, patients with EBV negative
disease were characterized by significantly inferior survival sup-
porting a retrospective analysis of 135 PBL cases of the LYSA
group>. This finding might be related to the fact that EBV
negative PBL cases seem to harbor more frequent mutations of
TP53 that might be associated with the chemorefractory disease.
Correspondingly, PBL patients with lymphomas harboring TP53
mutation showed an unfavorable clinical course.

In summary, we have identified previously unknown genetic
alterations affecting the RAS-RAF, JAK-STAT, MCL1, IRF4, and
NOTCH pathways. These insights will help to define PBL on a
molecular level. Functional analyses of these aberrations identi-
fied particularly the IRF4 and the JAK-STAT pathways as ther-
apeutically targetable vulnerabilities for the rational treatment of
PBL patients. These promising preclinical findings warrant fur-
ther clinical testing to improve the outcome of patients diagnosed
with PBL.

Methods

Patient samples. FFPE material of primary PBL samples was collected from the
University Hospitals in Miinster, Kiel, Wiirzburg, Berlin, Basel, Glasgow, Tiibin-
gen, the Robert-Bosch Hospital in Stuttgart, and the Germans Trias i Pujol Hos-
pital, University Hospital of Bellvitge, Hospital Vall d'Hebron and Hospital del Mar
in Barcelona, and Hospital Gregorio Maraién in Madrid. Selected primary PBL
cases were independently reevaluated in a central pathology review of four expert
hematopathologists (Ioannis Anagnostopoulos, Wolfgang Hartmann, German Ott,
and Gustavo Tapia). Individual cases that were subsequently included in our
analysis were evaluated by at least two different expert hematopathologists. From
initially 118 collected cases, 96 cases were histologically confirmed as PBL
according to the criteria of the WHO Classification of 20172 (Supplementary
Fig. 1a and Supplementary Data 1). Twelve cases were excluded as plasma cell
neoplasm, immunohistochemical staining revealed four cases to be ALK + DLBCL

and three cases to be HHV8 + lymphoproliferation. The tumor content was
microscopically determined on hematoxylin and eosin-stained slides. Specifically,
the relative percentage of tumor blastic B-cells was recorded in increments of 10%
taking into account the relative percentages of non-blastic bystander lymphocytes
and histiocytes (Supplementary Data 1). The median tumor content was 90%
(min-max range: 20-100%). For 22 PBL specimens, paired normal tissue was
available. Sites of origin are listed in Supplementary Data 1. Contamination with
tumor cells was excluded based on conventional hematoxylin/eosin and immu-
nohistochemistry. For 49 cases with molecular data corresponding clinical and
survival data were retrieved (Supplementary Data 1). This study was approved by
institutional ethics review boards of the University Hospitals in Tiibingen, Glas-
gow, and Basel and the Germans Trias i Pujol Hospital in Barcelona, in accordance
with the Declaration of Helsinki. Informed consent was obtained according to the
requirements of the responsible ethics committee.

DNA extraction. DNA was extracted from FFPE samples using the Gene Read
DNA FFPE Kit (Qiagen, Hilden, Germany). To assess quality, we applied a gPCR-
based method by Illumina (Illumina FFPE QC kit, San Diego, USA) comparing the
amplificability of extracted DNA to a reference template. According to Illumina,
obtained ACt values (cycle threshold) indicate good DNA quality when a value of
<2 was determined. DNA concentration was determined using the Qubit DNA
Quantification Assay Kit (Thermo Fisher Scientific, Waltham,

Massachusetts, USA).

Immunohistochemistry and FISH. To achieve homogenous immunophenotype
data, tissue microarrays were constructed from 68 suitable PBL FFPE cases®. In
detail, three 0.6 mm thick cores per case were taken from the selected donor block
using a “manual tissue puncher” (Beecher Instruments, Silver Spring, Maryland,
USA) and inserted into the recipient block. Immunohistochemical stainings for
CD3, CD19, CD20, CD30, CD38, CD56, CD138, PAX5, MUMI1/IRF4, BLIMP1,
Ki-67, MYC, HHVS, ALK, PD-L1, PD-L2, and EBER in situ hybridization were
performed according to established protocols®* (Supplementary Table 2). The
percentage of positive tumor cell nuclei was recorded for BLIMP1 and Ki-67 in
increments of 10%. All other markers were scored to be positive or negative
regardless of staining intensity according to a predefined cutoff (Supplementary
Data 1).

FISH was performed according to standard procedures®>>°. The 57 PBL
specimens were hybridized with the Vysis LSI MYC dual color break-apart probe
(BAP) (Abbot Molecular, Wiesbaden, Germany) and 63 cases with the MYC-IgH
fusion probe (FP) (Abbot Molecular) (Supplementary Data 1). The evaluation was
performed according to standard procedures®”. At least 100 intact nuclei per case
were evaluated using an epifluorescence microscope (Leica Microsystems,
Bensheim, Germany). Images were captured using the ISIS imaging system
(MetaSystems, Altlussheim, Germany) (Supplementary Fig. 2).

WES and data analysis

Library generation. For each sample, we provided DNA amounts as recommended
by the FFPE QC Kit (Illumina), a QPCR-based method comparing the ability of
amplification for extracted DNA to a reference template (Supplementary Data 1).
We correlated age of FFPE material with obtained ACt values and found a sig-
nificant correlation of higher age with lesser DNA quality expressed by higher ACt
values (r=0.53, p=1.5x 10~7) (Supplementary Fig. 11a). For exome capturing,
the Agilent SureSelect Human All Exon V6 Kit (Agilent Technologies, Santa Clara,
California, USA) was applied according to the manufacturer’s instructions. In brief,
DNA samples were sheared, end-repaired, ligated with adapter molecules, and
amplified. Magnetic beads were used to capture exonic DNA regions. Captured
libraries were enriched, purified, and quantified.

Sequencing and alignment. Sequencing was performed on a HiSeq platform (Illu-
mina) with 150 bp paired-end reads. Measured sequence reads were aligned against
the current human reference genome from the Genome Reference Consortium
(GRCh38) using HISAT2 v2.1.0°%°°. We verified sample concordance using the
NGSCheckMate program and confirmed that each tumor/normal pair had a
matching germline®.

Quality control on read and sample level, effective coverage, and variant discovery.
For variant discovery, we utilized the Genome Analysis Toolkit (GATK) v4.1.2.0%!
and Mutect 2.1%2, To determine the effective coverage, we counted only reads
aligned by HISAT?2 that also passed GATK and Mutect read level quality control
read filters, i.e., only those reads that were actually utilized for subsequent variant
discovery (see Supplementary Fig. 4 for the distribution of effective coverage).
Three samples were excluded due to low effective coverage and one further sample
due to hypermutation (4/89).

Basic variant filtering. To build a panel of normal variants (PON), we first per-
formed variant discovery with the same experimental and analytical pipeline for 38
normal controls (comprised of 29 normals from patients and additional nine

samples from healthy donor lymph nodes). A variant was included in the PON if
Mutect determined it as significant in at least two independent subjects. This PON
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was subsequently used to filter germline variants and potential pipeline-specific
artifacts by applying Mutect. Additionally, we used the gnomAD database as a large
population germline resource based on the Exome Aggregation Consortium
ExAC®3. For tumor samples for which DNA-sequencing of paired normal cell
samples were available, we additionally utilized these specimens for a more specific
paired statistical variant analysis by Mutect. Otherwise, we used the unpaired
analysis mode.

Advanced variant annotation and filtering. Next, we applied an optimized multi-
stage filter hierarchy to reach the maximal specificity of somatic mutation calls. All
filter steps in the applied order are listed in Supplementary Data 2. For this
hierarchy, we first annotated discovered variants with their transcript and protein
level consequences using TransVar 2.4.1%4 and the NCBI RefSeq gene models®. In
the case of multiple RefSeq transcripts per gene, we annotated each variant with the
one leading to the strongest possible biological consequence on protein level
according to TransVar. For mutation overview plots, we selected the first principal
transcript of the respective gene according to the APPRIS database®. Additionally,
we annotated variants with confirmed somatic mutations according to the Catalog
Of Somatic Mutations In Cancer (COSMIC v85¢7), the NCBI database of common
human variants (>5% in any of the five large populations from dbSNP build 15168),
and NCBI ClinVar® (version 2018-04) using vcfanno v0.3.070. To filter FFPE
specific artifacts, we fitted the read orientation model of GATK 4.1.2 (LearnRea-
dOrientationModel) that flags variants with a significant bias between forward and
reverse reads. As first countermeasure for alignment artifacts caused by high
sequence homology, e.g., from pseudogenes, we additionally filtered variants uti-
lizing the GATK FilterAlignmentArtifacts model. We correlated the number of
called somatic mutations to the quality of DNA (measured by ACt values) without
finding any significant correlation (r = —0.02, p = 0.84; Supplementary Fig. 11b)
indicating that our filter hierarchy recognizes specific FFPE artifacts efficiently and
compensates for lower quality of provided DNA. Microscopically determined
tumor load did also not correlate with the number of called somatic mutations
(r=10.04, p =0.75; Supplementary Fig. 11c).

Variants called somatic and specificity gains by paired samples. Based on variant
statistics from Mutect, GATK, and all annotations, our filter hierarchy called 0.09%
of all variants as somatic mutations (see Supplementary Data 2 for detailed
mutation counts and percentages remaining after each filtering step). To compare
pipeline specificity loss between samples having patient-matched normals and
tumor-only samples, we recomputed paired initial tumor samples in unpaired
mode (i.e., without using their matched germline normals). We determined a
sensitivity of 0.98, a precision of 0.56, and a balanced F-score of 0.72.

Gene level mutation analysis. Based on called somatic mutations (and, for back-
ground estimation, somatic variants that are synonymous with respect to protein
level consequences), potential cancer driver genes were predicted using MutSig2CV
version 3.117L. In addition to variant level filtering and since high sequence
homology causes certain genomic regions to be impossible to analyze with current
WES technology”’2, we filtered for genes that still had variants with artificially high
coverage (such as several MUC* genes) (Supplementary Fig. 4). Next, we created
MAF-formatted input files in HG19 coordinates for MutSig2CV using CrossMap
version 0.4.073. Finally, we considered all top genes with a MutSig2CV false dis-
covery rate of g <0.1 for subsequent analyses (Supplementary Data 3).

Additional tools and software utilized for WES analysis. For various analysis tasks in
the sequencing pipeline, we used bedtools’4, the Integrated Genomics Viewer (IGV
v2.6.3-2.8.0)7°, the Picard toolkit (https://broadinstitute.github.io/picard/), and
SAMtools”®. For analysis pipeline orchestration including parallel remote analysis
jobs on high-performance clusters as well as for most visualizations including
oncoplots, we used MATLAB® (versions R2018a-R2020a, The MathWorks® Inc.,
Natick, Massachusetts, USA). We used Microsoft Excel (versions 2016-2019) for
collecting clinical metadata and presenting results. R (version 3.6.3, R Foundation
for Statistical Computing, Vienna, Austria), Python (version 2.7-3.X, Python
Software Foundation, Wilmington, Delaware, USA), and GNU parallel”” were used
for running various tools or for local parallelization. TMB was computed and
visualized together with TCGA data using maftool v2.7.41.78 Needle plots of
mutation profiles were created using ProteinPaint’®. Based on protein structures
from the PDBe-KB database®” that correspond to principal transcripts selected by
APPRIS, we visualized the location of mutations and their spatial clustering in 3D
protein structures with PyMOL8!. All used tools are summarized in Supplementary
Table 3.

Targeted resequencing. Targeted resequencing was performed by Next Generation
Sequencing (Ion GeneStudio S5 prime, Thermo Fisher Scientific) using an
AmpliSeq Custom Panel comprising hotspot regions in STAT3, KRAS, NRAS,
BRAF, and the complete coding sequence of TP53 and TET2 (Supplementary
Data 6). Amplicon library preparation and semiconductor sequencing were done
according to the manufacturers’ instructions using the Ion AmpliSeq Kit for Chef
DLS8, the Ion 510 & Ion 520 & Ion 530 Kit—Chef, the Ion 530 Chip Kit on the Ion
Chef, and the Ion GeneStudio S5 Prime system (Thermo Fisher Scientific). Output
files were generated with Torrent Suite 5.12.0. Variant calling of non-synonymous

somatic variants compared to the human reference sequence was performed using
the Ton Reporter Software (Thermo Fisher Scientific, Version 5.16.0.2). Variants
called by the Ion Reporter Software were visualized using the Integrative Genomics
Viewer (IGV 2.8.0)7 to exclude panel-specific artifacts.

Determination of SCNAs

Sample preparation and SNP microarray measurements. To determine SCNAs,
80 ng of extracted DNA was used applying the Oncoscan CNV FFPE Assay Kit
(Affymetrix, Thermo Fisher Scientific) according to the manufacturer’s instruc-
tions. In brief, the Oncoscan assay uses a microarray technique consisting of over
220.000 molecular inversion probes (MIP). MIP bind to target DNA forming an
incomplete, circular loop and leaving a gap at a specific SNP site. Following
annealing, probes are distributed to wells either containing adenosine and thy-
midine triphosphate or guanosine and cytosine triphosphate nucleotides. Uncir-
cularized MIP and genomic DNA are digested by exonucleases so that only closed,
circular MIP remains. MIP are linearized and amplified. Finally resulting fragments
bind to the Oncoscan assay array, are fluorescently stained and visualized in the
GeneChipTM Scanner 3000 7 G (Thermo Fisher Scientific). Fluorescence is pro-
portional to the copy number of analyzed genomic sites.

Sample level copy number segmentation and purity. Oncoscan raw data files were
preprocessed using the Chromosome Analysis Suite (ChAS version 4.0, Thermo
Fisher Scientific). Measurements by individual SNP probes were aggregated to
segments of unchanged allele-specific copy numbers by ASCAT v2.4.31. ASCAT
also estimated sample ploidy and purity (i.e., the cell fraction originating from
aberrated tumor cells as opposed to non-aberrated bystander cells).

Cohort level SCNA discovery. Recurrent SCNAs were identified and statistically
evaluated by GISTIC v2.0.23!%. Visual quality control of sample counts having a
particular SCNA over the genome axis revealed that some peak regions were too
narrow (for example in the IRF4 locus, the region focused on a ~0.3 Mb peak of
three samples on top of a well-defined ~0.4 Mb peak of ten additional samples
above baseline) (Fig. 2b). As this could not be solved by adjusting GISTIC’s
RegBounder confidence parameter, we applied a robust peak extension around
GISTIC-determined MCRs. First, we estimated from broad SCNAs the local
baseline counts n,,, of samples that have the current aberration type at peak site
(by averaging sample counts over all SNP probes in the MCR + 20% of the chro-
mosome arm length). Next, we counted samples at each SNP probe in the GISTIC
MCR and took their maximum #,,,,. With 1, = 1, — Mg counting samples
that have this aberration above baseline, we extended the MCR to the left and right
as long as 240% - 1, samples having this aberration type remained. This cuts
well-defined peaks at their flanks. To avoid broad uphill extensions, we additionally
stopped extension once counts grew >80% - 11, after they had already fallen
below this threshold between the MCR and the current extension position.

Mutation clonality by integrative analysis of WES and SNP results. To identify
potential early mutations in the pathogenesis, we estimated mutation clonality.
First, we integrated Oncoscan results (tumor purity, ploidy, and copy numbers)
with variant AFs from the WES data to estimate cancer cell fractions (CCF) that
harbor specific mutations. We utilized the formula®2:

fvAF
fer=F""

f ((1 7fpurity) * CN normal + fpurity ) nCNJumor) (1)
purity

where fyAf denotes variant AF, ;. denotes tumor purity, ncy normal = 2
assuming diploid normal bystander cells, and ¢y (o denotes tumor cell copy
numbers as estimated by ASCAT. Then, we defined clonal variants using the

established threshold of f .y =0.928.

Statistical association analyses. We tested for associations between gene
mutations and SCNAs in the following defined clinical subcohorts: EBV positive vs.
EBV negative disease, HIV positive vs. HIV negative patients, HIV positive patients
with EBV positive PBL vs. HIV positive patients with EBV negative PBL, HIV
negative patients with EBV positive PBL vs. HIV negative patients with EBV
negative PBL, PBLs arising in the oral cavity/nasopharynx vs. PBLs arising else-
where, MYC translocated vs. untranslocated, patients with vs. without immuno-
suppression, patients with high IPI vs. low/intermediate IPI, patients with
lymphoma-specific survival (LSS) of less than 12 months vs. patients with LSS of
more than 24 months, CD20 negative PBLs vs. weakly CD20 positive cases. To test
for a significantly higher median mutation/SCNA count in one subcohort vs. the
other, we utilized a one-tailed Wilcoxon rank-sum test for each selected genetic
lesion (Supplementary Data 5). We focused our hypotheses on the identical gene
set of interest as shown in Fig. 1a (cohort mutation frequency >5%, gcv < 0.1
plus MYC and BRAF) and the recurrent SCNAs reaching significance according to
GISTIC as shown in Fig. 2 (cohort frequency 5%, qg,0<0.1). FDR were com-
puted using the Benjamini and Hochberg (BH) method®>. For significance, we used
a prescribed error threshold of g <0.1.
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Likewise and for control purposes, we compared mutation frequencies between
the subcohorts of PBL cases with matched normal vs. PBL cases without matched
normal for all genes having a cohort frequency 210% (Supplementary Data 5).

Survival analyses. We analyzed OS and LSS as clinical endpoints. OS was defined
as the time from diagnosis until death from any cause. Subjects not recorded to be
dead were censored at the follow-up time last known to be alive. LSS was defined as
the time from diagnosis until death due to lymphoma. Patients alive or dead from
other reasons were censored at their last follow-up time.

We estimated OS for the full cohort and compared OS between different risk
groups according to IPI. To assess survival differences between any two patient
subgroups, we computed log rank tests. We chose LSS as an endpoint to test the
following biologically preselected conditions: IPI, the status of EBV and HIV,
translocation and expression of MYC, amplification of 6p25.3 (IRF4), deletion of
17p, significant mutations (guvzcy < 0.1) with cohort frequency >10% (NRAS,
KRAS, STAT3, and TP53). FDRs were again computed using the BH method with a
significance threshold of g < 0.1 (Supplementary Data 9)83. As an additional
independent exploratory analysis, we tested for association between LSS and all
significant mutations (gmacyv < 0.1), all significant SCNAs (g2 <0.1) as well as
clinical metadata, using univariate Cox proportional hazard regression, FDRs were
calculated according to BH (Supplementary Data 9)33.

Cell culture, retroviral constructs, and cytotoxicity assay. The plasmablastic
cell line PBL-1 was cultured in RPMI 1640 with 20% fetal calf serum (FCS) and
supplemented with interleukin-6 (IL-6; 5 ng/ml)?!. DLBCL cell lines HT, Karpas
422 (K422), DB, WSU-DLCL2, and BJAB were grown in RPMI 1640 with 10%
FCS, OCI-Lyl, and OCI-Ly10 in Iscove’s Modified Dulbecco’s medium supple-
mented with either 10% FCS or 20% human plasma®4. All cells were maintained at
37°C and 5% CO,.

All cells were modified to express a murine ecotropic receptor and the rtT3
tetracycline transactivator®>-87. Transduction of small hairpin RNAs (shRNAs) or
complementary DNA constructs (cDNA) was performed!®8>. The targeting
sequences of IRF4 shRNAs #1 and #2 were CCGCCATTCCTCTATTCAAGA and
GTGCCATTTCTCAGGGAAGTA?2. The sequences of STAT3 targeting sShRNAs
#1 and #2 were GCCACTTTGGTGTTTCATAAT (binding in the coding
sequence) and GCATAGCCTTTCTGTATTTAA (binding in the 3/-untranslated
region), respectively (Supplementary Table 4). To assess shRNA-mediated
cytotoxicity assay, retroviruses that coexpress GFP were used. In brief, flow
cytometry (AttuneNxT, Thermo Fisher Scientific) was performed 2 days after
retroviral transduction to determine the initial GFP-positive proportion of live
cells. Cells were subsequently cultured in a medium with doxycycline to induce
shRNA expression and sampled over time. The GFP-positive proportion at each
time point was normalized to a nontoxic control sShRNA!8 and additionally
normalized to the initial GFP value. To rescue from toxicity after specific STAT3
knockdown, we transfected PBL-1 cells with a STAT3 cDNA construct. To prevent
knockdown of the exogenous STAT3 cDNA by shRNA#1, we introduced several
silent mutations within the shRNA binding site in the STAT3 cDNA applying the II
Site-Directed Mutagenesis Kit (Agilent). Equally, we applied the II Site-Directed
Mutagenesis Kit to introduce the p.D661Y mutant in STAT3 cDNA for further
functional analysis.

shRNA library screen. A customized shRNA library targeting 768 genes was
designed and constructed®$8°. In brief, a pool of 2669 shRNAs (Supplementary
Data 10) was subcloned into a retroviral vector system allowing doxycycline-
induced expression and was transduced into PBL-1 cells®. Following selection with
blasticidin (150 ug/ml, InvivoGen, CA) for 5 days, day 0 (d0) samples were har-
vested and cells were subsequently cultured with and without doxycycline for

12 days. After 12 days, shRNA expressing cells (dsRed+/Venus+-) were sorted by
FACS (FACSAria III, BD, New Jersey, USA) and harvested (d12 samples).
Genomic DNA of d12 was extracted using phenol and precipitated by isopropanol.
Finally, sequencing libraries were created based on PCR amplification of shRNA
guide strands and sequenced on a NextSeq platform (Illumina). Two biological
replicates were analyzed. Reads were aligned using the BLAT algorithm (Standa-
lone BLAT v.36)%, and counts were aggregated for each ShRNA sequence. After
batch normalization and pre-filtering of shRNA reads with low coverage (sum of
read counts at dayl2 on/off dox <50 [301 shRNAs]), we assessed the fold change
and significance of shRNA depletion comparing the shRNA representation in
samples after 12 days with vs. without induced shRNA using DESeq2°! (for raw
read counts, quality control details, and results, see Supplementary Data 10).

Western blot. Western blotting was performed according to standard
procedures®2. Cells were harvested and resulting protein lysates were quantified
using the bicinchoninic acid assay (BCA) (Thermo Scientific). Proteins were
electrophoresed on 10% SDS-PAGE gel and transferred to polyvinylidene
difluoride membranes (Merck Millipore, Burlington, USA). Membranes were
washed and stained with peroxidase-conjugated antibodies that specifically bind to
the primary antibody. Binding was detected using Lumi-Light Western Blotting
Substrate (Sigma Aldrich) and visualized using an Amersham Imager 600 (GE
Healthcare Life Sciences, Chicago, USA). Primary antibodies directed against (p)

STAT3 (dilution 1:1,000), IRF4 (1:1,000), and Tubulin (1:5,000) were obtained
from Cell Signaling Technology (Cambridge, UK) and Sigma Aldrich (St. Louis,
Missouri, USA), respectively. PBL-1 cells were cultured in medium with and
without IL-6 and were treated with 0.5 uM tofacitinib (Selleckchem, Houston,
USA) or the corresponding amount of DMSO for 4 h at 37 °C (5% CO,) until
protein lysates were harvested and subjected to immunoblotting for (p)STATS3.
PBL-1 cells were treated with 1.25 pM lenalidomide (Selleckchem) or the corre-
sponding amount of DMSO for 24 h at 37 °C (5% CO,) until protein lysates were
harvested and subjected to immunoblotting for IRF4. To determine STAT3
knockdown following sShRNA induction or treatment with AZD9150%3 (AstraZe-
neca, Cambridge, UK), cells were induced with doxycycline for 4 days or treated
with 25 uM of AZD9150 for 1 day, respectively until protein lysates were harvested.
To determine IRF4 knockdown following shRNA induction, cells were equally
induced with doxycycline for 4 days until protein lysates were harvested.

Cell viability assay. PBL-1 and the DLBCL cell lines HT, K422, DB, WSU-DLCL2,
BJAB, OCI-Ly1, and OCI-Ly10 were seeded in 96-well plates at 5000 cells per well.
They were treated with different concentrations of the JAK inhibitor tofacitinib, the
antisense oligonucleotide AZD9150, or lenalidomide (Selleckchem). Cell viability
was measured on day 3 or 5 using the CellTiter-Glo Luminescent Assay (Promega,
Diibendorf, Switzerland)®4. Luciferase reaction is utilized to quantify the amount of
ATP in viable cells. Produced luminescence was measured using the Victor X3
Plate Reader (Perkin Elmer, Waltham, Massachusetts, USA) and then compared
with DMSO-treated cells or cells treated with an antisense oligonucleotide control
molecule respectively.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The whole-exome sequencing data EGAD00001006400 and SNP microarray data
EGADO00010001978 generated in this study have been deposited in the European
Genome-phenome Archive (EGA) under study accession EGAS00001004659. These data
are available under restricted access for German data privacy laws; access can be obtained
via the associated data access committee EGAC00001001735. The processed somatic
mutations and copy number aberrations as well as clinical metadata and figure raw data
are provided in respective Supplementary Data items or the Source Data file. The
following public data sources were used in this study: The human reference genome from
the Genome Reference Consortium (GRCh38) in its pre-indexed form for alignment
with HISAT2%859 [http://daehwankimlab.github.io/hisat2/download/#h-sapiens], the
Catalog Of Somatic Mutations In Cancer (COSMIC®”, v85) [https://cancer.sanger.ac.uk/
cosmic], the NCBI database of common human variants (based on dbSNP build 15168,
version 2018-04) [https://www.ncbi.nlm.nih.gov/variation/docs/human_variation_vcf]),
NCBI ClinVar® (version 2018-04) [https://www.ncbi.nlm.nih.gov/clinvar/], gnomAD/
ExAC%3 germline variants as provided in the file af-only-gnomad.hg38.ensemble.vcf.gz of
the GATKO! resource bundle [originally accessed via ftp.broadinstitute.org/bundle, but
since moved by the Broad Institute to Google cloud bucket; see https://

gatk broadinstitute.org/hc/en-us/articles/360035890811-Resource-bundle for access
information], the PDBe-KB® for 3D protein information [https://www.ebi.ac.uk/pdbe/
pdbe-kb], and the principal splice isoforms database®® (APPRIS, version 2020-01-22)
[https://github.com/appris/appris]. Source data are provided with this paper.
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