3,666 research outputs found
Hadron multiplicity in e+e- events induced by top quark pairs at the ILC energy
The average charged hadron multiplicity in the events with the
primary -pair at the collision energy 500 GeV, as well as the average
multiplicity of charged hadrons from the top quark are calculated in QCD to be
and , respectively.Comment: 24 pages, 12 figures, journal version, to be published in PMC Physics
Large scale analytic calculations in quantum field theories
We present a survey on the mathematical structure of zero- and single scale
quantities and the associated calculation methods and function spaces in higher
order perturbative calculations in relativistic renormalizable quantum field
theories.Comment: 25 pages Latex, 1 style fil
Classical and semi-classical energy conditions
The standard energy conditions of classical general relativity are (mostly)
linear in the stress-energy tensor, and have clear physical interpretations in
terms of geodesic focussing, but suffer the significant drawback that they are
often violated by semi-classical quantum effects. In contrast, it is possible
to develop non-standard energy conditions that are intrinsically non-linear in
the stress-energy tensor, and which exhibit much better well-controlled
behaviour when semi-classical quantum effects are introduced, at the cost of a
less direct applicability to geodesic focussing. In this article we will first
review the standard energy conditions and their various limitations. (Including
the connection to the Hawking--Ellis type I, II, III, and IV classification of
stress-energy tensors). We shall then turn to the averaged, nonlinear, and
semi-classical energy conditions, and see how much can be done once
semi-classical quantum effects are included.Comment: V1: 25 pages. Draft chapter, on which the related chapter of the book
"Wormholes, Warp Drives and Energy Conditions" (to be published by Springer),
will be based. V2: typos fixed. V3: small typo fixe
Recommended from our members
Z boson production in Pb+Pb collisions at âSnn = 5.02 TeV measured by the ATLAS experiment
The production yield of Z bosons is measured in the electron and muon decay channels in Pb+Pb collisions at âS = 5.02 TeV with the ATLAS detector. Data from the 2015 LHC run corresponding to an integrated luminosity of 0.49 nb are used for the analysis. The Z boson yield, normalised by the total number of minimum-bias events and the mean nuclear thickness function, is measured as a function of dilepton rapidity and event centrality. The measurements in Pb+Pb collisions are compared with similar measurements made in proton-proton collisions at the same centre-of-mass energy. The nuclear modification factor is found to be consistent with unity for all centrality intervals. The results are compared with theoretical predictions obtained at next-to-leading order using nucleon and nuclear parton distribution functions. The normalised Z boson yields in Pb+Pb collisions lie 1-3Ï above the predictions. The nuclear modification factor measured as a function of rapidity agrees with unity and is consistent with a next-to-leading-order QCD calculation including the isospin effect. nn -
Measurement of J/Ï production in association with a W ± boson with pp data at 8 TeV
A measurement of the production of a prompt J/Ï meson in association with a W± boson with W± â ΌΜ and J/Ï â ÎŒ+ÎŒâ is presented for J/Ï transverse momenta in the range 8.5â150 GeV and rapidity |yJ/Ï| < 2.1 using ATLAS data recorded in 2012 at the LHC. The data were taken at a proton-proton centre-of-mass energy of s = 8 TeV and correspond to an integrated luminosity of 20.3 fbâ1. The ratio of the prompt J/Ï plus W± cross-section to the inclusive W± cross-section is presented as a differential measurement as a function of J/Ï transverse momenta and compared with theoretical predictions using different double-parton-scattering cross-sections. [Figure not available: see fulltext.]
Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fbâ1 of pp collisions at s=13TeV with the ATLAS experiment
A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fbâ1 of protonâproton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the tqÎł coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC tÎł production via a left-handed (right-handed) tuÎł coupling of 36 fb (78 fb) and on the branching ratio for tâÎłu of 2.8Ă10â5 (6.1Ă10â5). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC tÎł production via a left-handed (right-handed) tcÎł coupling of 40 fb (33 fb) and on the branching ratio for tâÎłc of 22Ă10â5 (18Ă10â5)
Recommended from our members
Combination of searches for Higgs boson pairs in pp collisions at s=13TeV with the ATLAS detector
This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fbâ1 of protonâproton collision data at a centre-of-mass energy s=13 TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the bbÂŻbbÂŻ, bbÂŻW+Wâ, bbÂŻÏ+Ïâ, W+WâW+Wâ, bb¯γγ and W+Wâγγ final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio (Îșλ) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to â5.0<Îșλ<12.0 (â5.8<Îșλ<12.0). In addition, limits are set on the production of narrow scalar resonances and spin-2 KaluzaâKlein RandallâSundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model
- âŠ