2,913 research outputs found

    Multi-objective engineering shape optimization using differential evolution interfaced to the Nimrod/O tool

    Get PDF
    This paper presents an enhancement of the Nimrod/O optimization tool by interfacing DEMO, an external multiobjective optimization algorithm. DEMO is a variant of differential evolution – an algorithm that has attained much popularity in the research community, and this work represents the first time that true multiobjective optimizations have been performed with Nimrod/O. A modification to the DEMO code enables multiple objectives to be evaluated concurrently. With Nimrod/O’s support for parallelism, this can reduce the wall-clock time significantly for compute intensive objective function evaluations. We describe the usage and implementation of the interface and present two optimizations. The first is a two objective mathematical function in which the Pareto front is successfully found after only 30 generations. The second test case is the three-objective shape optimization of a rib-reinforced wall bracket using the Finite Element software, Code_Aster. The interfacing of the already successful packages of Nimrod/O and DEMO yields a solution that we believe can benefit a wide community, both industrial and academic

    Dynamics-based centrality for general directed networks

    Full text link
    Determining the relative importance of nodes in directed networks is important in, for example, ranking websites, publications, and sports teams, and for understanding signal flows in systems biology. A prevailing centrality measure in this respect is the PageRank. In this work, we focus on another class of centrality derived from the Laplacian of the network. We extend the Laplacian-based centrality, which has mainly been applied to strongly connected networks, to the case of general directed networks such that we can quantitatively compare arbitrary nodes. Toward this end, we adopt the idea used in the PageRank to introduce global connectivity between all the pairs of nodes with a certain strength. Numerical simulations are carried out on some networks. We also offer interpretations of the Laplacian-based centrality for general directed networks in terms of various dynamical and structural properties of networks. Importantly, the Laplacian-based centrality defined as the stationary density of the continuous-time random walk with random jumps is shown to be equivalent to the absorption probability of the random walk with sinks at each node but without random jumps. Similarly, the proposed centrality represents the importance of nodes in dynamics on the original network supplied with sinks but not with random jumps.Comment: 7 figure

    Isomorphs in model molecular liquids

    Get PDF
    Isomorphs are curves in the phase diagram along which a number of static and dynamic quantities are invariant in reduced units. A liquid has good isomorphs if and only if it is strongly correlating, i.e., the equilibrium virial/potential energy fluctuations are more than 90% correlated in the NVT ensemble. This paper generalizes isomorphs to liquids composed of rigid molecules and study the isomorphs of two systems of small rigid molecules, the asymmetric dumbbell model and the Lewis-Wahnstrom OTP model. In particular, for both systems we find that the isochoric heat capacity, the excess entropy, the reduced molecular center-of-mass self part of the intermediate scattering function, the reduced molecular center-of-mass radial distribution function to a good approximation are invariant along an isomorph. In agreement with theory, we also find that an instantaneous change of temperature and density from an equilibrated state point to another isomorphic state point leads to no relaxation. The isomorphs of the Lewis-Wahnstrom OTP model were found to be more approximative than those of the asymmetric dumbbell model, which is consistent with the OTP model being less strongly correlating. For both models we find "master isomorphs", i.e., isomorphs have identical shape in the virial/potential energy phase diagram.Comment: 20 page

    An intervention framework for collaboration

    Get PDF
    This paper provides an intervention framework for collaboration to improve services. When collaboration is an intervention, its development and effectiveness depend on intervention logic. Intervention logic requires a precise conceptualization of collaboration. This conceptualization emphasizes its vital and unique components. It includes a developmental progression in which collaboration is contrasted with companion concepts. It also includes progress benchmarks, outcome measures, and logic models. These models depict relations among the benchmarks and outcomes, and they identify the mediating and moderating variables that account for collaboration's development and effectiveness. These models are designed to improve planning, evaluation, and their relations. This intervention framework for collaboration contrasts sharply with other conceptualizations and strategies. Although its aim is to unify and improve collaboration policy and practice, its inherent selectivity is an obvious limitation. [PUBLICATION ABSTRACT

    Penicillium verrucosum occurrence and Ochratoxin A contents in organically cultivated grain with special reference to ancient wheat types and drying practice

    Get PDF
    This study addresses the relationship between the ochratoxigenic strains of Penicillium verrucosum and ochratoxin A (OTA) contents in organically cultivated grain. It included 37 combined, non-dried grain samples from farmers with no drying facilities as well as 19 non-dried and 22 dried samples from six farms with on-farm drying facilities (Case studies 1-6). The study focused on the ancient wheat type spelt but also included samples of wheat, rye, barley, oats, triticale, emmer, and einkorn. All 78 samples were analysed for moisture content (MC) and occurrence of P. verrucosum. The latter was assessed by plating non-disinfected kernels on DYSG agar and counting those contaminated by the fungus. Fiftyfive samples were analysed for OTA. Most of the combine harvested samples (82%) were contaminated with P. verrucosum prior to drying. This was ascribed to difficult harvest conditions and many samples of spelt, which was significantly more contaminated by P. verrucosum than oats, wheat and barley. Though not statistically significant, the results also indicated that spelt was more contaminated than rye, which is usually regarded the most sensitive small grain cereal. No correlation was found between number of kernels contaminated by P. verrucosum and OTA content. Despite many non-dried samples being contaminated by P. verrucosum, only two exceeded the EU maximum limit for grain (5 ng OTA g-1), both being spring spelt with 18 and 92 ng g-1, respectively. The problems were most likely correlated to a late harvest and high MC of the grain. The case studies showed exceedings of the maximum limit in a batch of dried oats and spring wheat, respectively, probably to be explained by insufficient drying of late harvested grain with high MC. Furthermore, our results clearly indicate that OTA is not produced in significant amounts in samples with MCs below 17%. All dried samples with MCs above 18% exceeded the 5 ng OTA g-1 limit in grain. However, no correlation between MC and the amount of OTA produced was found

    The Grism Lens-Amplified Survey from Space (GLASS). XII. Spatially Resolved Galaxy Star Formation Histories and True Evolutionary Paths at z > 1

    Get PDF
    Modern data empower observers to describe galaxies as the spatially and biographically complex objects they are. We illustrate this through case studies of four, z1.3z\sim1.3 systems based on deep, spatially resolved, 17-band + G102 + G141 Hubble Space Telescope grism spectrophotometry. Using full spectrum rest-UV/-optical continuum fitting, we characterize these galaxies' observed \simkpc-scale structures and star formation rates (SFRs) and reconstruct their history over the age of the universe. The sample's diversity---passive to vigorously starforming; stellar masses logM/M=10.5\log M_*/M_\odot=10.5 to 11.211.2---enables us to draw spatio-temporal inferences relevant to key areas of parameter space (Milky Way- to super-Andromeda-mass progenitors). Specifically, we find signs that bulge mass-fractions (B/TB/T) and SF history shapes/spatial uniformity are linked, such that higher B/TB/Ts correlate with "inside-out growth" and central specific SFRs that peaked above the global average for all starforming galaxies at that epoch. Conversely, the system with the lowest B/TB/T had a flat, spatially uniform SFH with normal peak activity. Both findings are consistent with models positing a feedback-driven connection between bulge formation and the switch from rising to falling SFRs ("quenching"). While sample size forces this conclusion to remain tentative, this work provides a proof-of-concept for future efforts to refine or refute it: JWST, WFIRST, and the 30-m class telescopes will routinely produce data amenable to this and more sophisticated analyses. These samples---spanning representative mass, redshift, SFR, and environmental regimes---will be ripe for converting into thousands of sub-galactic-scale empirical windows on what individual systems actually looked like in the past, ushering in a new dialog between observation and theory.Comment: 18 pp, 15 figs, 3 tables (main text); 5 pp, 5 figs, 1 table (appendix); Submitted to AAS Journals 1 October 201
    corecore