141 research outputs found

    Developments in the scientific understanding of osteoarthritis

    Get PDF
    Osteoarthritis is often a progressive and disabling disease, which occurs in the setting of a variety of risk factors – such as advancing age, obesity, and trauma – that conspire to incite a cascade of pathophysiologic events within joint tissues. An important emerging theme in osteoarthritis is a broadening of focus from a disease of cartilage to one of the 'whole joint'. The synovium, bone, and cartilage are each involved in pathologic processes that lead to progressive joint degeneration. Additional themes that have emerged over the past decade are novel mechanisms of cartilage degradation and repair, the relationship between biomechanics and biochemical pathways, the importance of inflammation, and the role played by genetics. In this review we summarize current scientific understanding of osteoarthritis and examine the pathobiologic mechanisms that contribute to progressive disease

    Defect-induced modification of low-lying excitons and valley selectivity in monolayer transition metal dichalcogenides

    Get PDF
    We study the effect of point-defect chalcogen vacancies on the optical properties of monolayer transition metal dichalcogenides using ab initio GW and Bethe-Salpeter equation calculations. We find that chalcogen vacancies introduce unoccupied in-gap states and occupied resonant defect states within the quasiparticle continuum of the valence band. These defect states give rise to a number of strongly-bound defect excitons and hybridize with excitons of the pristine system, reducing the valley-selective circular dichroism. Our results suggest a pathway to tune spin-valley polarization and other optical properties through defect engineering

    F-spondin deficient mice have a high bone mass phenotype

    Get PDF
    F-spondin is a pericellular matrix protein upregulated in developing growth plate cartilage and articular cartilage during osteoarthritis. To address its function in bone and cartilage in vivo, we generated mice that were deficient for the F-spondin gene, Spon1. Spon1-/- mice were viable and developed normally to adulthood with no major skeletal abnormalities. At 6 months, femurs and tibiae of Spon1-/- mice exhibited increased bone mass, evidenced by histological staining and micro CT analyses, which persisted up to 12 months. In contrast, no major abnormalities were observed in articular cartilage at any age group. Immunohistochemical staining of femurs and tibiae revealed increased levels of periostin, alkaline phosphate and tartrate resistant acid phosphatase (TRAP) activity in the growth plate region of Spon1-/- mice, suggesting elevated bone synthesis and turnover. However, there were no differences in serum levels of TRAP, the bone resorption marker, CTX-1, or osteoclast differentiation potential between genotypes. Knockout mice also exhibited reduced levels of TGF-ÎČ1 in serum and cultured costal chondrocytes relative to wild type. This was accompanied by increased levels of the BMP-regulatory SMADs, P-SMAD1/5 in tibiae and chondrocytes. Our findings indicate a previously unrecognized role for Spon1 as a negative regulator of bone mass. We speculate that Spon1 deletion leads to a local and systemic reduction of TGF-ÎČ levels resulting in increased BMP signaling and increased bone deposition in adult mice. © 2014 Palmer et al

    Cyclooxygenase in biology and disease

    Full text link
    Cyclooxygenase (COX), the key enzyme required for the conversion of arachidonic acid to prostaglandins was first identified over 20 years ago. Drugs, like aspirin, that inhibit cyclooxygenase activity have been available to the public for about 100 years. In the past decade, however, more progress has been made in understanding the role of cyclooxygenase enzymes in biology and disease than at any other time in history. Two cyclooxygenase isoforms have been identified and are referred to as COX‐1 and COX‐2. Under many circumstances the COX‐1 enzyme is produced constitutively (i.e., gastric mucosa) whereas COX‐2 is inducible (i.e., sites of inflammation). Here, we summarize the current understanding of the role of cyclooxygenase‐1 and ‐2 in different physiological situations and disease processes ranging from inflammation to cancer. We have attempted to include all of the most relevant material in the field, but due to the rapid progress in this area of research we apologize that certain recent findings may have been left out.—DuBois, R. N., Abramson, S. B., Crofford, L., Gupta, R. A., Simon, L. S., van de Putte, L. B. A., Lipsky, P. E. Cyclooxygenase in biology and disease. FASEB J. 12, 1063–1073 (1998)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154527/1/fsb2fasebj12121063.pd

    Periostin loss-of-function protects mice from post-traumatic and age-related osteoarthritis

    Get PDF
    BACKGROUND: Elevated levels of periostin (Postn) in the cartilage and bone are associated with osteoarthritis (OA). However, it remains unknown whether Postn loss-of-function can delay or prevent the development of OA. In this study, we sought to better understand the role of Postn in OA development and assessed the functional impact of Postn deficiency on post-traumatic and age-related OA in mice. METHODS: The effects of Postn deficiency were studied in two murine experimental OA models using Postn RESULTS: Postn CONCLUSIONS: Postn deficiency protects against DMM-induced post-traumatic and age-related spontaneous OA. RNA-seq findings warrant further investigations to better understand the mechanistic role of Postn and its potential as a therapeutic target in OA

    Deletion of Panx3 Prevents the Development of Surgically Induced Osteoarthritis

    Get PDF
    © 2015, Springer-Verlag Berlin Heidelberg. Abstract: Osteoarthritis (OA) is a highly prevalent, disabling joint disease with no existing therapies to slow or halt its progression. Cartilage degeneration hallmarks OA pathogenesis, and pannexin 3 (Panx3), a member of a novel family of channel proteins, is upregulated during this process. The function of Panx3 remains poorly understood, but we consistently observed a strong increase in Panx3 immunostaining in OA lesions in both mice and humans. Here, we developed and characterized the first global and conditional Panx3 knockout mice to investigate the role of Panx3 in OA. Interestingly, global Panx3 deletion produced no overt phenotype and had no obvious effect on early skeletal development. Mice lacking Panx3 specifically in the cartilage and global Panx3 knockout mice were markedly resistant to the development of OA following destabilization of medial meniscus surgery. These data indicate a specific catabolic role of Panx3 in articular cartilage and identify Panx3 as a potential therapeutic target for OA. Lastly, while Panx1 has been linked to over a dozen human pathologies, this is the first in vivo evidence for a role of Panx3 in disease. Key message: Panx3 is localized to cartilage lesions in mice and humans.Global Panx3 deletion does not result in any developmental abnormalities.Mice lacking Panx3 are resistant to the development of osteoarthritis.Panx3 is a novel therapeutic target for the treatment of osteoarthritis
    • 

    corecore