447 research outputs found
Radiation measurements in the new tandem accelerator FEL
The measurements of both spontaneous and stimulated emissions of radiation in
the newly configured Israeli EA-FEL are made for the first time. The radiation
at the W-band was measured and characterized. The results match the predictions
of our earlier theoretical modeling and calculations.Comment: 4 pages, 3 figures, FEL 2003 Conference repor
A Characterization of Compact-friendly Multiplication Operators
Answering in the affirmative a question posed in [Y.A.Abramovich,
C.D.Aliprantis and O.Burkinshaw, Multiplication and compact-friendly operators,
Positivity 1 (1997), 171--180], we prove that a positive multiplication
operator on any -space (resp. on a -space) is compact-friendly
if and only if the multiplier is constant on a set of positive measure (resp.
on a non-empty open set).
In the process of establishing this result, we also prove that any
multiplication operator has a family of hyperinvariant bands -- a fact that
does not seem to have appeared in the literature before. This provides useful
information about the commutant of a multiplication operator.Comment: To appear in Indag. Math., 12 page
Multiscale Discriminant Saliency for Visual Attention
The bottom-up saliency, an early stage of humans' visual attention, can be
considered as a binary classification problem between center and surround
classes. Discriminant power of features for the classification is measured as
mutual information between features and two classes distribution. The estimated
discrepancy of two feature classes very much depends on considered scale
levels; then, multi-scale structure and discriminant power are integrated by
employing discrete wavelet features and Hidden markov tree (HMT). With wavelet
coefficients and Hidden Markov Tree parameters, quad-tree like label structures
are constructed and utilized in maximum a posterior probability (MAP) of hidden
class variables at corresponding dyadic sub-squares. Then, saliency value for
each dyadic square at each scale level is computed with discriminant power
principle and the MAP. Finally, across multiple scales is integrated the final
saliency map by an information maximization rule. Both standard quantitative
tools such as NSS, LCC, AUC and qualitative assessments are used for evaluating
the proposed multiscale discriminant saliency method (MDIS) against the
well-know information-based saliency method AIM on its Bruce Database wity
eye-tracking data. Simulation results are presented and analyzed to verify the
validity of MDIS as well as point out its disadvantages for further research
direction.Comment: 16 pages, ICCSA 2013 - BIOCA sessio
Chaotic Phenomenon in Nonlinear Gyrotropic Medium
Nonlinear gyrotropic medium is a medium, whose natural optical activity
depends on the intensity of the incident light wave. The Kuhn's model is used
to study nonlinear gyrotropic medium with great success. The Kuhn's model
presents itself a model of nonlinear coupled oscillators. This article is
devoted to the study of the Kuhn's nonlinear model. In the first paragraph of
the paper we study classical dynamics in case of weak as well as strong
nonlinearity. In case of week nonlinearity we have obtained the analytical
solutions, which are in good agreement with the numerical solutions. In case of
strong nonlinearity we have determined the values of those parameters for which
chaos is formed in the system under study. The second paragraph of the paper
refers to the question of the Kuhn's model integrability. It is shown, that at
the certain values of the interaction potential this model is exactly
integrable and under certain conditions it is reduced to so-called universal
Hamiltonian. The third paragraph of the paper is devoted to quantum-mechanical
consideration. It shows the possibility of stochastic absorption of external
field energy by nonlinear gyrotropic medium. The last forth paragraph of the
paper is devoted to generalization of the Kuhn's model for infinite chain of
interacting oscillators
On the Crepant Resolution Conjecture in the Local Case
In this paper we analyze four examples of birational transformations between
local Calabi-Yau 3-folds: two crepant resolutions, a crepant partial
resolution, and a flop. We study the effect of these transformations on
genus-zero Gromov-Witten invariants, proving the
Coates-Corti-Iritani-Tseng/Ruan form of the Crepant Resolution Conjecture in
each case. Our results suggest that this form of the Crepant Resolution
Conjecture may also hold for more general crepant birational transformations.
They also suggest that Ruan's original Crepant Resolution Conjecture should be
modified, by including appropriate "quantum corrections", and that there is no
straightforward generalization of either Ruan's original Conjecture or the
Cohomological Crepant Resolution Conjecture to the case of crepant partial
resolutions. Our methods are based on mirror symmetry for toric orbifolds.Comment: 27 pages. This is a substantially revised and shortened version of my
preprint "Wall-Crossings in Toric Gromov-Witten Theory II: Local Examples";
all results contained here are also proved there. To appear in Communications
in Mathematical Physic
Besov priors for Bayesian inverse problems
We consider the inverse problem of estimating a function from noisy,
possibly nonlinear, observations. We adopt a Bayesian approach to the problem.
This approach has a long history for inversion, dating back to 1970, and has,
over the last decade, gained importance as a practical tool. However most of
the existing theory has been developed for Gaussian prior measures. Recently
Lassas, Saksman and Siltanen (Inv. Prob. Imag. 2009) showed how to construct
Besov prior measures, based on wavelet expansions with random coefficients, and
used these prior measures to study linear inverse problems. In this paper we
build on this development of Besov priors to include the case of nonlinear
measurements. In doing so a key technical tool, established here, is a
Fernique-like theorem for Besov measures. This theorem enables us to identify
appropriate conditions on the forward solution operator which, when matched to
properties of the prior Besov measure, imply the well-definedness and
well-posedness of the posterior measure. We then consider the application of
these results to the inverse problem of finding the diffusion coefficient of an
elliptic partial differential equation, given noisy measurements of its
solution.Comment: 18 page
Transport and structural study of pressure-induced magnetic states in Nd0.55Sr0.45MnO3 and Nd0.5Sr0.5MnO3
Pressure effects on the electron transport and structure of Nd1-xSrxMnO3 (x =
0.45, 0.5) were investigated in the range from ambient to ~6 GPa. In
Nd0.55Sr0.45MnO3, the low-temperature ferromagnetic metallic state is
suppressed and a low temperature insulating state is induced by pressure. In
Nd0.5Sr0.5MnO3, the CE-type antiferromagnetic charge-ordering state is
suppressed by pressure. Under pressure, both samples have a similar electron
transport behavior although their ambient ground states are much different. It
is surmised that pressure induces an A-type antiferromagnetic state at low
temperature in both compounds
Enumerative aspects of the Gross-Siebert program
We present enumerative aspects of the Gross-Siebert program in this
introductory survey. After sketching the program's main themes and goals, we
review the basic definitions and results of logarithmic and tropical geometry.
We give examples and a proof for counting algebraic curves via tropical curves.
To illustrate an application of tropical geometry and the Gross-Siebert program
to mirror symmetry, we discuss the mirror symmetry of the projective plane.Comment: A version of these notes will appear as a chapter in an upcoming
Fields Institute volume. 81 page
- …