3,335 research outputs found
Improved linear response for stochastically driven systems
The recently developed short-time linear response algorithm, which predicts
the average response of a nonlinear chaotic system with forcing and dissipation
to small external perturbation, generally yields high precision of the response
prediction, although suffers from numerical instability for long response times
due to positive Lyapunov exponents. However, in the case of stochastically
driven dynamics, one typically resorts to the classical fluctuation-dissipation
formula, which has the drawback of explicitly requiring the probability density
of the statistical state together with its derivative for computation, which
might not be available with sufficient precision in the case of complex
dynamics (usually a Gaussian approximation is used). Here we adapt the
short-time linear response formula for stochastically driven dynamics, and
observe that, for short and moderate response times before numerical
instability develops, it is generally superior to the classical formula with
Gaussian approximation for both the additive and multiplicative stochastic
forcing. Additionally, a suitable blending with classical formula for longer
response times eliminates numerical instability and provides an improved
response prediction even for long response times
Separation of variables in perturbed cylinders
We study the Laplace operator subject to Dirichlet boundary conditions in a
two-dimensional domain that is one-to-one mapped onto a cylinder (rectangle or
infinite strip). As a result of this transformation the original eigenvalue
problem is reduced to an equivalent problem for an operator with variable
coefficients. Taking advantage of the simple geometry we separate variables by
means of the Fourier decomposition method. The ODE system obtained in this way
is then solved numerically yielding the eigenvalues of the operator. The same
approach allows us to find complex resonances arising in some non-compact
domains. We discuss numerical examples related to quantum waveguide problems.Comment: LaTeX 2e, 18 pages, 6 figure
Cross sections for geodesic flows and \alpha-continued fractions
We adjust Arnoux's coding, in terms of regular continued fractions, of the
geodesic flow on the modular surface to give a cross section on which the
return map is a double cover of the natural extension for the \alpha-continued
fractions, for each in (0,1]. The argument is sufficiently robust to
apply to the Rosen continued fractions and their recently introduced
\alpha-variants.Comment: 20 pages, 2 figure
- …