21,252 research outputs found

    The Pierre Auger Observatory: Results on Ultra-High Energy Cosmic Rays

    Full text link
    The focus of this article is on recent results on ultra-high energy cosmic rays obtained with the Pierre Auger Observatory. The world's largest instrument of this type and its performance are described. The observations presented here include the energy spectrum, the primary particle composition, limits on the fluxes of photons and neutrinos and a discussion of the anisotropic distribution of the arrival directions of the most energetic particles. Finally, plans for the construction of a Northern Auger Observatory in Colorado, USA, are discussed.Comment: Proceedings of the International Workshop on Advances in Cosmic Ray Science, Waseda University, Shinjuku, Tokyo, Japan, March 2008; to be published in the Journal of the Physical Society of Japan (JPSJ) supplemen

    Non-equilibrium Dynamics of Finite Interfaces

    Full text link
    We present an exact solution to an interface model representing the dynamics of a domain wall in a two-phase Ising system. The model is microscopically motivated, yet we find that in the scaling regime our results are consistent with those obtained previously from a phenomenological, coarse-grained Langevin approach.Comment: 12 pages LATEX (figures available on request), Oxford preprint OUTP-94-07

    A Rigorous Derivation of Electromagnetic Self-force

    Full text link
    During the past century, there has been considerable discussion and analysis of the motion of a point charge, taking into account "self-force" effects due to the particle's own electromagnetic field. We analyze the issue of "particle motion" in classical electromagnetism in a rigorous and systematic way by considering a one-parameter family of solutions to the coupled Maxwell and matter equations corresponding to having a body whose charge-current density Ja(λ)J^a(\lambda) and stress-energy tensor Tab(λ)T_{ab} (\lambda) scale to zero size in an asymptotically self-similar manner about a worldline γ\gamma as λ→0\lambda \to 0. In this limit, the charge, qq, and total mass, mm, of the body go to zero, and q/mq/m goes to a well defined limit. The Maxwell field Fab(λ)F_{ab}(\lambda) is assumed to be the retarded solution associated with Ja(λ)J^a(\lambda) plus a homogeneous solution (the "external field") that varies smoothly with λ\lambda. We prove that the worldline γ\gamma must be a solution to the Lorentz force equations of motion in the external field Fab(λ=0)F_{ab}(\lambda=0). We then obtain self-force, dipole forces, and spin force as first order perturbative corrections to the center of mass motion of the body. We believe that this is the first rigorous derivation of the complete first order correction to Lorentz force motion. We also address the issue of obtaining a self-consistent perturbative equation of motion associated with our perturbative result, and argue that the self-force equations of motion that have previously been written down in conjunction with the "reduction of order" procedure should provide accurate equations of motion for a sufficiently small charged body with negligible dipole moments and spin. There is no corresponding justification for the non-reduced-order equations.Comment: 52 pages, minor correction

    Ferromagnetic resonance study of polycrystalline Fe_{1-x}V_x alloy thin films

    Full text link
    Ferromagnetic resonance has been used to study the magnetic properties and magnetization dynamics of polycrystalline Fe1−x_{1-x}Vx_{x} alloy films with 0≤x<0.70\leq x < 0.7. Films were produced by co-sputtering from separate Fe and V targets, leading to a composition gradient across a Si substrate. FMR studies were conducted at room temperature with a broadband coplanar waveguide at frequencies up to 50 GHz using the flip-chip method. The effective demagnetization field 4πMeff4 \pi M_{\mathrm{eff}} and the Gilbert damping parameter α\alpha have been determined as a function of V concentration. The results are compared to those of epitaxial FeV films

    Janis-Newman-Winicour and Wyman solutions are the same

    Get PDF
    We show that the well-known most general static and spherically symmetric exact solution to the Einstein-massless scalar equations given by Wyman is the same as one found by Janis, Newman and Winicour several years ago. We obtain the energy associated with this spacetime and find that the total energy for the case of the purely scalar field is zero.Comment: 9 pages, LaTex, no figures, misprints corrected, to appear in Int. J. Mod. Phys.

    Quantum corrections to the Larmor radiation formula in scalar electrodynamics

    Full text link
    We use the semi-classical approximation in perturbative scalar quantum electrodynamics to calculate the quantum correction to the Larmor radiation formula to first order in Planck's constant in the non-relativistic approximation, choosing the initial state of the charged particle to be a momentum eigenstate. We calculate this correction in two cases: in the first case the charged particle is accelerated by a time-dependent but space-independent vector potential whereas in the second case it is accelerated by a time-independent vector potential which is a function of one spatial coordinate. We find that the corrections in these two cases are different even for a charged particle with the same classical motion. The correction in each case turns out to be non-local in time in contrast to the classical approximation.Comment: 19 page

    A kinetic model of radiating electrons

    Get PDF
    A kinetic theory is developed to describe radiating electrons whose motion is governed by the Lorentz-Dirac equation. This gives rise to a generalized Vlasov equation coupled to an equation for the evolution of the physical submanifold of phase space. The pathological solutions of the 1-particle theory may be removed by expanding the latter equation in powers of τ ≔ q 2/6πm. The radiation-induced change in entropy is explored and its physical origin is discussed. As a simple demonstration of the theory, the radiative damping rate of longitudinal plasma waves is calculated
    • …
    corecore