2,204 research outputs found
Non-immunological complications following kidney transplantation [version 1; referees: 3 approved]
Kidney transplantation (KT) is the most effective way to decrease the high morbidity and mortality of patients with end-stage renal disease. However, KT does not completely reverse the damage done by years of decreased kidney function and dialysis. Furthermore, new offending agents (in particular, immunosuppression) added in the post-transplant period increase the risk of complications. Cardiovascular (CV) disease, the leading cause of death in KT recipients, warrants pre-transplant screening based on risk factors. Nevertheless, the screening methods currently used have many shortcomings and a perfect screening modality does not exist. Risk factor modification in the pre- and post-transplant periods is of paramount importance to decrease the rate of CV complications post-transplant, either by lifestyle modification (for example, diet, exercise, and smoking cessation) or by pharmacological means (for example, statins, anti-hyperglycemics, and so on). Post-transplantation diabetes mellitus (PTDM) is a major contributor to mortality in this patient population. Although tacrolimus is a major contributor to PTDM development, changes in immunosuppression are limited by the higher risk of rejection with other agents. Immunosuppression has also been implicated in higher risk of malignancy; therefore, proper cancer screening is needed. Cancer immunotherapy is drastically changing the way certain types of cancer are treated in the general population; however, its use post-transplant is limited by the risk of allograft rejection. As expected, higher risk of infections is also encountered in transplant recipients. When caring for KT recipients, special attention is needed in screening methods, preventive measures, and treatment of infection with BK virus and cytomegalovirus. Hepatitis C virus infection is common in transplant candidates and in the deceased donor pool; however, newly developed direct-acting antivirals have been proven safe and effective in the pre- and post-transplant periods. The most important and recent developments on complications following KT are reviewed in this article
Assessment of Dual Schistosome Infection Prevalence from Urine in An Endemic Community of Ghana By Molecular Diagnostic Approach
Schistosomiasis is an important Neglected Tropical Disease caused by blood parasites called schistosomes. In sub-Saharan Africa, two major human schistosomes, namely Schistosoma mansoni and S. haematobium, often occur sympatrically and is responsible for almost 90% of the affected 290 million people worldwide. We have utilized a highly sensitive and specific assay by amplifying species-specific cell-free repeat DNA fragments by polymerase chain reaction to detect either single or dual schistosome infection from a single urine sample from a broad age group. In this study, we have tested filtered urine samples collected from 163 individuals aged 3–63 years, mostly children (median age 10), to evaluate the prevalence of single and dual infections for S. mansoni and S. haematobium in Tomefa community in the Greater Accra region of Ghana. 40–50 mL of urine was filtered through a 12.5 cm Whatman # 3 filter paper in the field. The filter papers were dried, packed individually in sealable plastic bags with a desiccant, and shipped to Marquette University, where DNA was isolated and PCR amplification was carried out with species-specific primers. Disease prevalence was found to be 46.6% for S. mansoni and 48.5% for S. haematobium. Most importantly, 23.3% of participants had dual infections. All of the samples were detected without any cross amplification. The data was evaluated for four age groups and infection rate was highest for the age group of 3–12 years, with more S. haematobium infections than S. mansoni infections. We found a high prevalence of both S. haematobium and S. mansoni infection and a significant proportion of dual infection for the Tomefa community, which in most cases would be missed by traditional parasitological examination of urine or stool. Our highly sensitive and specific approach for detecting underlying multiple schistosome infections is an effective means to detect low intensity infections and would enhance the effectiveness of surveillance and Mass Drug Administration control programs of schistosomiasis
Recommended from our members
Fbxl17 is rearranged in breast cancer and loss of its activity leads to increased global O -GlcNAcylation
Funder: Wildy Fellowship Department of PathologyFunder: Addenbrooke's Charitable Trust, Cambridge University Hospitals; doi: http://dx.doi.org/10.13039/501100002927Funder: The Mark FoundationAbstract: In cancer, many genes are mutated by genome rearrangement, but our understanding of the functional consequences of this remains rudimentary. Here we report the F-box protein encoded by FBXL17 is disrupted in the region of the gene that encodes its substrate-binding leucine rich repeat (LRR) domain. Truncating Fbxl17 LRRs impaired its association with the other SCF holoenzyme subunits Skp1, Cul1 and Rbx1, and decreased ubiquitination activity. Loss of the LRRs also differentially affected Fbxl17 binding to its targets. Thus, genomic rearrangements in FBXL17 are likely to disrupt SCFFbxl17-regulated networks in cancer cells. To investigate the functional effect of these rearrangements, we performed a yeast two-hybrid screen to identify Fbxl17-interacting proteins. Among the 37 binding partners Uap1, an enzyme involved in O-GlcNAcylation of proteins was identified most frequently. We demonstrate that Fbxl17 binds to UAP1 directly and inhibits its phosphorylation, which we propose regulates UAP1 activity. Knockdown of Fbxl17 expression elevated O-GlcNAcylation in breast cancer cells, arguing for a functional role for Fbxl17 in this metabolic pathway
Saliva samples are a viable alternative to blood samples as a source of DNA for high throughput genotyping.
BACKGROUND: The increasing trend for incorporation of biological sample collection within clinical trials requires sample collection procedures which are convenient and acceptable for both patients and clinicians. This study investigated the feasibility of using saliva-extracted DNA in comparison to blood-derived DNA, across two genotyping platforms: Applied Biosystems Taqman™ and Illumina Beadchip™ genome-wide arrays. METHOD: Patients were recruited from the Pharmacogenetics of Breast Cancer Chemotherapy (PGSNPS) study. Paired blood and saliva samples were collected from 79 study participants. The Oragene DNA Self-Collection kit (DNAgenotek®) was used to collect and extract DNA from saliva. DNA from EDTA blood samples (median volume 8 ml) was extracted by Gen-Probe, Livingstone, UK. DNA yields, standard measures of DNA quality, genotype call rates and genotype concordance between paired, duplicated samples were assessed. RESULTS: Total DNA yields were lower from saliva (mean 24 μg, range 0.2-52 μg) than from blood (mean 210 μg, range 58-577 μg) and a 2-fold difference remained after adjusting for the volume of biological material collected. Protein contamination and DNA fragmentation measures were greater in saliva DNA. 78/79 saliva samples yielded sufficient DNA for use on Illumina Beadchip arrays and using Taqman assays. Four samples were randomly selected for genotyping in duplicate on the Illumina Beadchip arrays. All samples were genotyped using Taqman assays. DNA quality, as assessed by genotype call rates and genotype concordance between matched pairs of DNA was high (>97%) for each measure in both blood and saliva-derived DNA. CONCLUSION: We conclude that DNA from saliva and blood samples is comparable when genotyping using either Taqman assays or genome-wide chip arrays. Saliva sampling has the potential to increase participant recruitment within clinical trials, as well as reducing the resources and organisation required for multicentre sample collection.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
The topological structure of scaling limits of large planar maps
We discuss scaling limits of large bipartite planar maps. If p is a fixed
integer strictly greater than 1, we consider a random planar map M(n) which is
uniformly distributed over the set of all 2p-angulations with n faces. Then, at
least along a suitable subsequence, the metric space M(n) equipped with the
graph distance rescaled by the factor n to the power -1/4 converges in
distribution as n tends to infinity towards a limiting random compact metric
space, in the sense of the Gromov-Hausdorff distance. We prove that the
topology of the limiting space is uniquely determined independently of p, and
that this space can be obtained as the quotient of the Continuum Random Tree
for an equivalence relation which is defined from Brownian labels attached to
the vertices. We also verify that the Hausdorff dimension of the limit is
almost surely equal to 4.Comment: 45 pages Second version with minor modification
Predicting Abraham model solvent coefficients
Abstract Background: The Abraham general solvation model can be used in a broad set of scenarios involving partitioning and solubility, yet is limited to a set of solvents with measured Abraham coefficients. Here we extend the range of applicability of Abraham's model by creating open models that can be used to predict the solvent coefficients for all organic solvents. Results: We created open random forest models for the solvent coefficients e, s, a, b, and v that had out-of-bag
COP27 climate change conference: urgent action needed for Africa and the world
The 2022 report of the Intergovernmental Panel on Climate Change (IPCC) paints a dark picture of the future of life on earth, characterised by ecosystem collapse, species extinction, and climate hazards such as heatwaves and floods.1 These are all linked to physical and mental health problems, with direct and indirect consequences of increased morbidity and mortality. To avoid these catastrophic health effects across all regions of the globe, there is broad agreement—as 231 health journals argued together in 2021—that the rise in global temperature must be limited to less than 1.5oC compared with pre-industrial levels
CYP2D6 gene variants: association with breast cancer specific survival in a cohort of breast cancer patients from the United Kingdom treated with adjuvant tamoxifen.
INTRODUCTION: Tamoxifen is one of the most effective adjuvant breast cancer therapies available. Its metabolism involves the phase I enzyme, cytochrome P4502D6 (CYP2D6), encoded by the highly polymorphic CYP2D6 gene. CYP2D6 variants resulting in poor metabolism of tamoxifen are hypothesised to reduce its efficacy. An FDA-approved pre-treatment CYP2D6 gene testing assay is available. However, evidence from published studies evaluating CYP2D6 variants as predictive factors of tamoxifen efficacy and clinical outcome are conflicting, querying the clinical utility of CYP2D6 testing. We investigated the association of CYP2D6 variants with breast cancer specific survival (BCSS) in breast cancer patients receiving tamoxifen. METHODS: This was a population based case-cohort study. We genotyped known functional variants (n = 7; minor allele frequency (MAF) > 0.01) and single nucleotide polymorphisms (SNPs) (n = 5; MAF > 0.05) tagging all known common variants (tagSNPs), in CYP2D6 in 6640 DNA samples from patients with invasive breast cancer from SEARCH (Studies of Epidemiology and Risk factors in Cancer Heredity); 3155 cases had received tamoxifen therapy. There were 312 deaths from breast cancer, in the tamoxifen treated patients, with over 18000 years of cumulative follow-up. The association between genotype and BCSS was evaluated using Cox proportional hazards regression analysis. RESULTS: In tamoxifen treated patients, there was weak evidence that the poor-metaboliser variant, CYP2D6*6 (MAF = 0.01), was associated with decreased BCSS (P = 0.02; HR = 1.95; 95% CI = 1.12-3.40). No other variants, including CYP2D6*4 (MAF = 0.20), previously reported to be associated with poorer clinical outcomes, were associated with differences in BCSS, in either the tamoxifen or non-tamoxifen groups. CONCLUSIONS: CYP2D6*6 may affect BCSS in tamoxifen-treated patients. However, the absence of an association with survival in more frequent variants, including CYP2D6*4, questions the validity of the reported association between CYP2D6 genotype and treatment response in breast cancer. Until larger, prospective studies confirming any associations are available, routine CYP2D6 genetic testing should not be used in the clinical setting.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
A nested cohort study of 6,248 early breast cancer patients treated in neoadjuvant and adjuvant chemotherapy trials investigating the prognostic value of chemotherapy-related toxicities.
BACKGROUND: The relationship between chemotherapy-related toxicities and prognosis is unclear. Previous studies have examined the association of myelosuppression parameters or neuropathy with survival and reported conflicting results. This study aims to investigate 13 common chemotherapy toxicities and their association with relapse-free survival and breast cancer-specific survival. METHODS: Chemotherapy-related toxicities were collected prospectively for 6,248 women with early-stage breast cancer from four randomised controlled trials (NEAT; BR9601; tAnGo; Neo-tAnGo). Cox proportional-hazards modelling was used to analyse the association between chemotherapy-related toxicities and both breast cancer-specific survival and relapse-free survival. Models included important prognostic factors and stratified by variables violating the proportional hazards assumption. RESULTS: Multivariable analysis identified severe neutropenia (grades ≥3) as an independent predictor of relapse-free survival (hazard ratio (HR) = 0.86; 95% confidence interval (CI), 0.76-0.97; P = 0.02). A similar trend was seen for breast cancer-specific survival (HR = 0.87; 95% CI, 0.75-1.01; P = 0.06). Normal/low BMI patients experienced more severe neutropenia (P = 0.008) than patients with higher BMI. Patients with fatigue (grades ≥3) showed a trend towards reduced survival (breast cancer-specific survival: HR = 1.17; 95% CI, 0.99-1.37; P = 0.06). In the NEAT/BR9601 sub-group analysis by treatment component, this effect was statistically significant (HR = 1.61; 95% CI, 1.13-2.30; P = 0.009). CONCLUSIONS: This large study shows a significant association between chemotherapy-induced neutropenia and increased survival. It also identifies a strong relationship between low/normal BMI and increased incidence of severe neutropenia. It provides evidence to support the development of neutropenia-adapted clinical trials to investigate optimal dose calculation and its impact on clinical outcome. This is important in populations where obesity may lead to sub-optimal chemotherapy doses
- …