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Abstract

Background: The relationship between chemotherapy-related toxicities and prognosis is unclear. Previous studies
have examined the association of myelosuppression parameters or neuropathy with survival and reported conflicting
results. This study aims to investigate 13 common chemotherapy toxicities and their association with relapse-free
survival and breast cancer-specific survival.

Methods: Chemotherapy-related toxicities were collected prospectively for 6,248 women with early-stage breast
cancer from four randomised controlled trials (NEAT; BR9601; tAnGo; Neo-tAnGo). Cox proportional-hazards modelling
was used to analyse the association between chemotherapy-related toxicities and both breast cancer-specific survival
and relapse-free survival. Models included important prognostic factors and stratified by variables violating the
proportional hazards assumption.

Results: Multivariable analysis identified severe neutropenia (grades ≥3) as an independent predictor of relapse-free
survival (hazard ratio (HR) = 0.86; 95 % confidence interval (CI), 0.76–0.97; P = 0.02). A similar trend was seen for breast
cancer-specific survival (HR = 0.87; 95 % CI, 0.75–1.01; P = 0.06). Normal/low BMI patients experienced more severe
neutropenia (P = 0.008) than patients with higher BMI. Patients with fatigue (grades ≥3) showed a trend towards reduced
survival (breast cancer-specific survival: HR = 1.17; 95 % CI, 0.99–1.37; P = 0.06). In the NEAT/BR9601 sub-group analysis by
treatment component, this effect was statistically significant (HR = 1.61; 95 % CI, 1.13–2.30; P = 0.009).

Conclusions: This large study shows a significant association between chemotherapy-induced neutropenia and
increased survival. It also identifies a strong relationship between low/normal BMI and increased incidence of
severe neutropenia. It provides evidence to support the development of neutropenia-adapted clinical trials to
investigate optimal dose calculation and its impact on clinical outcome. This is important in populations where
obesity may lead to sub-optimal chemotherapy doses.
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Background
Chemotherapy-related toxicities (CRTs) are a common
complication of treatment in all cancers. For each CRT,
multiple factors contribute to their development, including
pharmacogenetic and co-morbidity factors [1]. The rela-
tionship between the occurrence of various CRTs and sub-
sequent survival has been investigated in relatively small
cohorts in multiple tumour types with conflicting results.
A CRT may be a proxy pharmacokinetic parameter, indi-
cating the level of drug exposure, dose density delivered
and/or metabolic activity, or it may be a proxy pharmaco-
dynamic parameter that reflects the sensitivity and suscep-
tibility of different tissues to chemotherapy.
Many studies in different tumour types have investi-

gated the association between survival and measures of
myelosuppression. Eskander et al. [2] reviewed seven
breast cancer studies with inter-study heterogeneity in
trial design and varying toxicities, including leukocyte
nadir, myelosuppression and neutropenia. The largest
study [3] (n = 750), showed that patients with grade 2 or
3 neutropenia, on the National Cancer Institute Com-
mon Toxicity Criteria for Adverse Events (NCI CTCAE)
scale, had a 10 % absolute survival advantage at 5 years
compared to those with no neutropenia (multivariable
P = 0.037). Shitara et al. [4] performed a meta-analysis
of 13 trials (n = 9,528) considering several different
toxicities, varying tumour types, stages of disease, and
thresholds of NCI CTCAE classification and concluded
that neutropenia or leukopenia experienced during
chemotherapy was associated with improved survival.
The association between survival and taxane-related

sensory neuropathy in breast cancer patients has been
explored previously. Schneider et al. [5] investigated
4,554 patients from a randomised controlled clinical trial
and found no significant relationship between neur-
opathy and disease-free survival (DFS), overall survival,
or relapse-free survival (RFS). However, Moreno-Aspitia
et al. [6] did report an association of taxane-related
sensory neuropathy with DFS in early stage, taxane-
treated, human epidermal growth factor (HER2)-positive
breast cancer patients. In ovarian cancer, Lee et al. [7]
found that sensory neuropathy secondary to treatment
with paclitaxel and carboplatin was associated with im-
proved progression-free survival (n = 949).
Moderate and/or severe oral mucositis was associ-

ated with improved survival in one study [8] (n = 533).
Another study associated oral mucositis with an in-
creased risk of infection and an adverse impact on
survival [9].
Although there is considerable data on the impact of

fatigue on quality of life [10, 11] in early stage breast
cancer, there is no published evidence on the prognostic
significance of chemotherapy-induced fatigue in early
stage disease.

We have investigated the association between 13 com-
mon CRTs and RFS and breast cancer-specific survival
(BCSS) in patients (n = 6,248) with early stage breast
cancer using data from randomised controlled trials with
prospective protocol-driven collection of CRTs.

Methods
Patients and clinical trials
Clinical data was collected from the UK randomised
clinical trials NEAT (n = 2027) [12], BR9601 (n = 374)
[12], tAnGo (n = 3152) [13], and Neo-tAnGo (n = 831)
[14], creating a nested cohort of 6,248 patients, from a
total of 6,384 patients, included in this study after pro-
viding adequate quality toxicity data. Additional file 1:
Figure S1a,b summarises the individual clinical trials
included and their trial objectives. Table 1 summarises
patient characteristics of the 6,248 patients, with
Additional file 1: Table S1 showing patient characteris-
tics by each trial. Median follow-up was 6.2 years, with
1,335 (21 %) breast cancer-related events, 148 (2 %)
non-breast cancer-related deaths, and 4,765 (77 %) live
patients. For the analysis of RFS, there were 1,888
events (30 %) recorded and 4,360 (70 %) censored ob-
servations. Written informed consent was obtained
from each patient recruited into the trials. All the
trials involved received full ethical approval from a UK
ethical review board and completed all other regula-
tory requirements prior to commencement.

Phenotypes
In all trials, CRTs were evaluated during each chemo-
therapy cycle for each patient. CRTs were graded using
NCI CTCAE (version 2 or 3; Table S2 in Additional file 1)
by the investigators at the participating centres and data
collected centrally via case report forms. For each of the
13 CRTs of interest (Fig. 1 - Consort diagram for
chemotherapy-related toxicity analyses), patients were
categorised into a case or control based on their max-
imum reported grade of the CRT throughout their
chemotherapy treatment (Table S3, Additional file 1). All
trials required pre-treatment blood count assessment
prior to administration of each cycle and neutropenia was
classified from immediate pre-chemotherapy blood tests.
Blood draw was avoided during the expected white blood
cell nadir period.

Ethics, consent and permissions
Ethical approval was obtained for tAnGo (West
Midlands: 00/7/44), Neo-tAnGo (South East: 04/
MRE01/60), NEAT/BR9601 (West Midlands: 30/04/
1996) and PGSNPS (Cambridgeshire: 05Q0108/71).
All patients gave their consent to participate in the trials.
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Statistical analysis
To investigate the association between CRTs and out-
comes, BCSS time was calculated from date of treatment
cessation to date of death due to breast cancer, or to
date of death due to other causes, or date of censoring
in women still alive. RFS time was calculated from date
of treatment cessation to either the date of first relapse
or date of death in women dying without relapse, or to
date of censoring for those alive and relapse free.
Cox proportional-hazards modelling was used to in-

vestigate the association between CRTs experienced
(categorised as shown in Additional file 1: Table S3) and
BCSS and RFS. A base Cox model was created by testing
the association of important prognostic factors with
BCSS and RFS. Any factors which were significant at P
<0.05 in univariable analysis were entered into a multi-
variable Cox model and factors remaining significant on
adjustment in the multivariable model were retained for
the base Cox model. The proportional hazards assump-
tion was checked using the Schoenfeld residuals method
[15]. Subsequent models were stratified by variables that
violated the proportional hazards assumption. All CRTs
significant in a univariable Cox model at the P <0.1 level
were entered into the multivariable base Cox model to
assess their association with BCSS and RFS. Associations

Table 1 Summary of patient characteristics for the study cohort

Study cohort

n %

Randomised treatment

E-CMF 1156 19

CMF 1149 19

EC-T 1773 28

EC-TG 1769 28

T-EC 200 3

TG-EC 201 3

Age, years

≤ 50 3606 58

> 50 2642 42

ER status

Negative 2551 41

Positive 3591 57

Missing 106 2

pGR status

Negative 2463 39

Positive 2652 43

Missing 1133 18

HER2 status

Negative 3760 60

Positive 1034 17

Missing 1454 23

Nodal status

Negative 1366 22

1–3 positive 2383 38

Clinically negative, neoadjuvant 409 7

Clinically positive, neoadjuvant 403 6

4+ positive 1687 27

Breast cancer-specific survival

Breast cancer related deaths 1335 21

Deaths due to other cause 148 2

Alive 4765 77

Relapse-free survival

Events 1888 30

Censored 4360 70

Triple negative status

No (ER+ and HER2–) 2321 37

Yes (ER–, PGR– or unknown, and HER2–) 1242 20

Missing 2685 43

ECOG performance status

0 5232 84

≥ 1 683 11

Missing 333 5

Table 1 Summary of patient characteristics for the study cohort
(Continued)

Tumour size, mm

0–20 2195 35

21–50 3375 54

> 50 475 8

Missing 203 3

Tumour grade

1 146 2

2 2206 35

3 3654 59

Missing 242 4

Menopausal status

Pre/peri 3480 56

Post 2200 35

Missing 568 9

BMI

Underweight (<18.5) 69 1

Healthy weight (18.5 to <25) 2503 40

Overweight (25 to <30) 2088 33

Obese (≥30) 1469 24

ER Estrogen receptor; pGR Progesterone receptor; HER2 Human epidermal
growth factor receptor; ECOG Eastern Co-operative Oncology Group; BMI Body
mass index; E Epirubicin; C Cyclophosphamide; M Methotrexate; F 5-fluouroucil; T
Paclitaxel; G Gemcitabine
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between CRTs and BCSS or RFS were deemed statisti-
cally significant if the P value was <0.05.
Any CRT showing a relationship with outcome at this

stage was further investigated. To determine if the rela-
tionship found was independent of dose intensity (DI)
(sub-optimal DI (<85 %) versus optimal DI (>85 %))
[16], the analysis was re-run adjusting for DI. Due to the
known relationship between increasing BMI and poor
prognosis [17, 18], we similarly assessed if adjusting for
BMI affected the relationship between the CRT and
RFS/BCSS. Additionally, CRT relationships with known
prognostic factors were assessed using χ2 tests with con-
tinuity corrections.
After performing this analysis on all 6,248 patients,

seven different components of the treatment regimens
received by the group of patients were investigated
(Table S4 in Additional file 1), including (1) epirubi-
cin (E); (2) cyclophosphamide, methotrexate and 5-
fluorouracil (CMF) after having received E; (3) CMF
as the sole treatment regimen; (4) EC as a primary
component; (5) paclitaxel (T) and/or gemcitabine (G)
after receiving EC; (6) T and/or G as a primary com-
ponent; and (7) EC after having received T and/or G).
Case-control re-classification for each of the CRTs of
interest was undertaken focusing purely on the pa-
tients’ maximum reported grade during the different
components of their particular treatment regimen.

Association with increased or decreased RFS and
BCSS was assessed.

Results
Analysis of maximum CRT across all chemotherapy
treatments
The base Cox model included trial, performance status
(PS) and nodal status, and was stratified by tumour
size, tumour grade and estrogen receptor (ER) status.
Neutropenia, fatigue, anaemia, combined haematological
toxicity and constipation were nominally significant
(P <0.1) for either BCSS or RFS (or both) on uni-
variable analysis (Table 2). All other CRTs were not
found to be associated with either RFS or BCSS.
After adjustment for other prognostic factors in the
model, only neutropenia was significant. Fatigue was
not statistically significant after adjustment (BCSS;
HR = 1.17; 95 % CI, 0.99–1.37; P = 0.06).

Neutropenia
Neutropenia status was available for 5,886 patients, of
whom 1,456 (25 %) recorded neutropenia grade ≥3 over
the course of their entire chemotherapy treatment; 4,430
(75 %) did not. After adjusting for the base model prog-
nostic factors, neutropenia remained a statistically sig-
nificant, independent predictor of RFS (HR = 0.86; 95 %
CI, 0.76–0.97; P = 0.02), with a similar trend seen for

Fig. 1 Consort diagram for chemotherapy-related toxicity analyses. *Combined, combined haematology phenotype; Myal/Arthral, myalgia and
arthralgia combined phenotype
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BCSS (HR = 0.87; 95 % CI, 0.75–1.01; P = 0.06). The
association was strengthened after further adjustment
for DI (BCSS: HR = 0.85; 95 % CI, 0.73–0.98; P = 0.03;
RFS: HR = 0.84; 95 % CI, 0.74–0.95; P = 0.005). Patients
with grade ≥3 neutropenia were likely to survive and re-
main relapse free for longer when compared to patients
who experienced grades ≤2. Neutropenia appeared
unrelated to triple negative status (P = 0.85), ER status
(P = 0.46), and HER2 status (P = 0.36).
Underweight and normal BMI patients were more

likely to record severe neutropenia during their treat-
ment course than overweight or obese BMI patients
(27 % vs. 24 %, P = 0.008). Given the known association
of increasing BMI with poor prognosis [17, 18], we re-
peated the analysis adjusting for BMI, to confirm that
the relationship between neutropenia and RFS/BCSS
was independent of BMI. Adjusting for BMI only mar-
ginally changed the results (BCSS: HR = 0.88; 95 % CI,
0.76–1.02; P = 0.08; RFS: HR = 0.87; 95 % CI, 0.77–0.98;
P = 0.02). Adjustment for both DI and BMI simultaneously

resulted in similar findings to when adjusting only for DI
(BCSS: HR = 0.85; 95 % CI, 0.74–0.99; P = 0.04; RFS:
HR = 0.84; 95 % CI, 0.74–0.95; P = 0.006). Under-
weight and normal patients were also more likely to
report moderate-severe vomiting (grade ≥2, P = 0.009).
Obese and overweight patients recorded more diarrhoea
(grade ≥2, P = 0.02), infection (grade ≥2, P = 0.005), neur-
opathy (grade ≥2, P < 0.0001) and arthralgia/myalgia
(grade ≥2, P = 0.002), but these CRTs were not associated
with either improved or reduced survival.
Older patients and post-menopausal patients were

more likely to have neutropenia during their treat-
ment course (28 % vs. 22 %, P <0.0001 and 28 % vs.
22 %, P <0.0001, respectively).
The extent of neutropenia experienced by the study co-

hort was not influenced by the use of prophylactic growth
colony stimulating factor (GCSF). GCSF was not routinely
given as prophylaxis as part of the trial protocol of any of
the study trials. GCSF use was allowed secondary to an ad-
mission for febrile neutropenia and/or based on clinical

Table 2 Analysis of maximum CRT across all treatments

Toxicity n
(Univariable
analysis)

n
(Multivariable
analysis)

BCSS RFS

Unadjusted Adjusted Unadjusted Adjusted

HR
(95 % CI)

P value HR
(95 % CI)

P value HR
(95 % CI)

P value HR
(95 % CI)

P value

Neutropeniaa 5886 5211 0.85
(0.74–0.98)

0.02 0.87
(0.75–1.01)

0.06 0.85
(0.76–0.95)

0.004 0.86
(0.76–0.97)

0.02

Nausea 6248 5468 1.11
(0.93–1.33)

0.25 1.09
(0.90–1.33)

0.37 1.07
(0.91–1.25)

0.42 1.06
(0.90–1.26)

0.47

Vomiting 6248 5468 0.98
(0.80–1.19)

0.80 1.03
(0.84–1.28)

0.76 1.00
(0.85–1.18)

>0.99 1.05
(0.88–1.26)

0.57

Stomatitis 6248 5468 1.20
(0.89–1.63)

0.24 1.25
(0.90–1.74)

0.19 1.09
(0.83–1.43)

0.54 1.12
(0.83–1.50)

0.46

Constipation 5886 5211 0.91
(0.80–1.04)

0.17 0.95
(0.82–1.09)

0.45 0.91
(0.82–1.01)

0.09 0.94
(0.83–1.05)

0.27

Diarrhoea 6248 5468 0.93
(0.68–1.26)

0.64 0.98
(0.70–1.38)

0.93 1.08
(0.85–1.37)

0.54 1.19
(0.92–1.55)

0.18

Infection 6248 5468 1.09
(0.97–1.22)

0.14 1.01
(0.90–1.15)

0.82 1.06
(0.96–1.16)

0.26 1.01
(0.91–1.12)

0.88

Fatigue 6248 5468 1.24
(1.07–1.43)

0.004 1.17
(0.99–1.37)

0.06 1.17
(1.03–1.32)

0.01 1.13
(0.99–1.30)

0.08

Anaemia 3943 3582 1.18
(0.97–1.42)

0.09 1.14
(0.93–1.39)

0.21 1.11
(0.95–1.30)

0.20 1.08
(0.91–1.28)

0.36

Combined
haematological

3943 3582 0.89
(0.77–1.03)

0.11 0.88
(0.76–1.03)

0.12 0.88
(0.78–0.99)

0.03 0.88
(0.78–1.00)

0.06

Neurotoxicity 3943 3582 0.96
(0.82–1.13)

0.64 0.99
(0.84–1.17)

0.90 0.98
(0.86–1.12)

0.78 0.99
(0.87–1.14)

0.94

Myalgia 3943 3582 0.95
(0.82–1.09)

0.43 1.03
(0.89–1.20)

0.69 0.95
(0.84–1.06)

0.34 1.02
(0.91–1.16)

0.70

Fever 3943 3582 0.98
(0.67–1.44)

0.91 0.84
(0.57–1.26)

0.41 1.08
(0.80–1.46)

0.63 0.98
(0.71–1.34)

0.88

BCSS Breast cancer-specific survival; RFS Relapse-free survival; HR Hazard ratio; CI Confidence interval
aCases classified as National Cancer Institute Common Toxicity Criteria for Adverse Events (NCI CTCAEAE) grade ≥3
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judgement. However, only in 9 % of patients was the use of
GCSF ever reported. It is unlikely, therefore, that this would
have a significant impact on the overall results shown.
As previous studies [19] have classified neutropenia as

no neutropenia versus any (grade 0 vs. ≥1), we repeated
the neutropenia analysis using this classification (Table 3).
The multivariable analysis demonstrated a statistically
significant association between neutropenia and BCSS
(HR = 0.87; 95 % CI, 0.77–0.99; P = 0.03) with a similar
trend for RFS (HR = 0.91; 95 % CI, 0.82–1.01; P = 0.07).

Fatigue
Fatigue status was available for 6,248 patients, of whom 855
(14 %) recorded fatigue grades ≥3 at some point in their
chemotherapy treatment whereas 5,393 (86 %) did not.
Fatigue was associated with poorer BCSS and RFS in the
univariable models, but the associations were attenuated
and no longer significant after adjusting for other prognos-
tic variables (BCSS: HR = 1.17; 95 % CI, 0.99–1.37; P = 0.06;
RFS: HR = 1.13; 95 % CI, 0.99–1.30; P = 0.08).
Fatigue appeared unrelated to BMI (P = 0.76), triple

negative status (P = 0.50), HER2 status (P = 0.86), age
(P = 0.33), menopausal status (P = 0.27), and GCSF ad-
ministration (P = 0.89). ER negative patients may be
more likely to be classed as a fatigue case during their
treatment course (15 % vs. 13 % of ER positive patients,
P = 0.06), although this was not statistically significant
at the P = 0.05 threshold and may not be of clinical
significance.

CRTs of interest during specific chemotherapy regimen
components
In order to identify if CRTs reported during particular
combination chemotherapy treatments were associated
with increased or decreased RFS and BCSS, the analysis
was repeated considering only the maximum NCI
CTCAE grade documented during a specific chemo-
therapy regimen, rather the maximum NCI CTCAE
grade across all chemotherapy treatments (Additional
file 1: Table S4).

Neutropenia
Patients who experienced neutropenia grade ≥3 whilst
receiving epirubicin and cyclophosphamide (EC) as their
first chemotherapy component (drug regimen 4) were

significantly more likely to survive and remain relapse
free than those who did not (BCSS: HR = 0.83; 95 % CI,
0.69–1.00; P = 0.05; RFS: HR = 0.85; 95 % CI, 0.73–0.99;
P = 0.04) (Additional file 1: Table S4). However, experi-
encing neutropenia grade ≥3 whilst receiving T ± G as
their second chemotherapy component (having already
received EC, drug regimen 5) was not significantly
associated with outcome (BCSS: HR = 1.07; 95 % CI,
0.83–1.37; P = 0.62; RFS: HR = 1.00; 95 % CI, 0.80–1.24;
P = 0.99).
Neutropenia grade ≥3 being reported either during

T ± G as a first chemotherapy component, or during
EC as the second chemotherapy component (after T ±G)
was not significantly associated with outcome (drug regi-
mens 6 and 7), although the numbers of patients in these
datasets were small (n = 270 and 260, respectively).
Furthermore, when drug regimens 4 (CRT recorded in

EC, as the first chemotherapy) and 7 (CRT recorded in
EC, as the second chemotherapy after T ± G) were com-
bined to create a sample consisting of all tAnGo and
Neo-tAnGo patients receiving EC at any cycle of their
treatment, severe neutropenia was significantly associ-
ated with both increased BCSS (HR = 0.83; 95 % CI,
0.69–0.99; P = 0.04) and RFS (HR = 0.84; 95 % CI, 0.73–
0.98; P = 0.03). Neutropenia was not a significant pre-
dictor of survival for tAnGo and Neo-tAnGo patients
when it occurred during T ± G regimens.

Fatigue
Patients experiencing moderate-severe fatigue whilst re-
ceiving epirubicin (E) as their first chemotherapy compo-
nent (drug regimen 1) had significantly worse outcomes
(BCSS: HR = 1.48; 95 % CI, 1.03–2.12; P = 0.03; RFS: HR =
1.34; 95 % CI, 0.97–1.85); P = 0.07) than those who did
not record moderate-severe fatigue. Similarly, patients
reporting severe fatigue during the period they received
CMF as their second chemotherapy component (after
completing E; drug regimen 2), had reduced BCSS (HR =
1.61; 95 % CI, 1.13–2.30; P = 0.009) and RFS (HR = 1.39;
95 % CI, 1.01–1.92; P = 0.05). Interestingly, this strong ef-
fect was not seen for NEAT and BR9601 patients receiving
CMF only (drug regimen 3). Fatigue was not a significant
predictor of survival for tAnGo and Neo-tAnGo pa-
tients on EC and T ± G (Additional file 1: Table S4:
drug regimens 4–7).

Table 3 Analysis of neutropenia across all treatments (classification National Cancer Institute Common Toxicity Criteria for Adverse
Events (NCI CTCAE) grade ≥1 vs. grade 0)

Toxicity n
(univariable
analysis)

n
(multivariable
analysis)

BCSS RFS

Unadjusted Adjusted Unadjusted Adjusted

HR (95 % CI) P value HR (95 % CI) P value HR (95 % CI) P value HR (95 % CI) P value

Neutropenia 5,886 5,211 0.86 (0.77–0.96) 0.009 0.87 (0.77–0.99) 0.03 0.91 (0.83–0.99) 0.04 0.91 (0.82–1.01) 0.07

BCSS Breast cancer-specific survival; RFS Relapse-free survival; HR Hazard ratio; CI, Confidence interval
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Discussion
We have investigated the association between 13 CRTs
and clinical outcome (RFS and BCSS) in 6,248 patients
with early breast cancer treated within randomised clinical
trials of neoadjuvant and adjuvant chemotherapy. The
majority of CRTs were not associated with either RFS or
BCSS. However, we have demonstrated that severe neu-
tropenia (grades ≥3) is associated with improved RFS. In
addition, after re-classification of neutropenia case status
to grades ≥1, the association with BCSS remains. Previous
studies investigating the relationship between neutropenia
and survival have hypothesised that neutropenia is a re-
flection of chemotherapy efficacy and activity. This implies
that patients who are not achieving neutropenia may also
not be receiving an effective or adequately active dose
[18]. It must be noted that, in this study, 13 separate CRTs
have been tested against two clinical endpoints of BCSS
and RFS and, as such, the study findings must be
considered whilst bearing in mind the issue of multiple
testing.
Patients with normal or underweight BMI are more

likely to have severe neutropenia during their treatment
course in comparison to overweight or obese BMI pa-
tients (P = 0.008). In obese patients, due to an increase
in the amount of fat contributing to the actual weight
and potentially changes in blood flow, the pharmaco-
kinetics of chemotherapy may be affected. This may
affect volume of distribution, clearance, and, conse-
quently, patient drug exposure. Thus, overweight or
obese BMI patients may not be receiving an adequate
dose, although further investigations would be required
to confirm this. The disadvantages of using body sur-
face area (BSA) to dose patients have been discussed at
length elsewhere [20–22]. Drug disposition can show
4–10-fold inter-individual variability, which is inadequately
compensated for by using BSA. There is a strong argument
to include other variables to allow more accurate dose esti-
mation for each individual.
Bergh et al. [23] conducted a randomised trial comparing

high-dose chemotherapy versus haematologically-tailored
adjuvant chemotherapy to assess the effect on RFS and
overall survival. The haematologically-tailored arm speci-
fied that participants experienced pre-defined levels of
haematological toxicities. This study demonstrated that tai-
lored chemotherapy rather than high-dose chemotherapy
showed improved RFS. One shortcoming of this study was
that it used high-dose chemotherapy as the ‘control’ arm,
which is not the current standard treatment for early
breast cancer. Lindeman et al. [24] conducted a trial
using haematological criteria for selecting dosing strat-
egy. Study results, available in abstract form only, did
not show a statistically significant improvement in sur-
vival with tailored-chemotherapy compared with stand-
ard BSA-based chemotherapy. However, both distant

DFS and DFS showed trends towards a better outcome
for the tailored chemotherapy arm. Our results show
that chemotherapy-induced neutropenia is an additional
prognostic factor for longer-term outcomes, and we sug-
gest that this could be tested in trials randomising be-
tween personalising chemotherapy within an adaptive
protocol and standard chemotherapy dosing. Interestingly,
trials in which doses of cyclophosphamide and doxorubi-
cin were increased (NSABP B22 [25], NSABP B25 [26],
and CALGB 9344 [27]) did not show benefit in long-term
outcomes. However, dose-dense trials which increased the
frequency of chemotherapy dosing with filgrastim support
(CALGB 9741 [28] and a 10-study meta-analysis [29])
have shown improvement in longer-term outcomes. The
authors of CALGB 9741 stated that it was their impres-
sion that the improvements seen in CALGB 9741 were as
a result of the more frequent administration of chemo-
therapy, and that use of filgrastim did not by itself add to
the efficacy of dose-dense treatment [30].
These trials have applied dose intensification with fil-

grastim support, which has abrogated any ‘signal’ from
neutropenia; in fact, they have usually shown less febrile
neutropenia and neutropenic sepsis in the dose-dense
arm. In our study, we have looked at the prognostic effect
of developing neutropenia in trials which have used stand-
ard chemotherapy dosing without routine filgrastim sup-
port. Future trials would need to establish whether
adapting doses to achieve neutropenia would improve
outcomes. Our hypothesis is that host factors (such as
pharmacodynamic and pharmacogenomic factors) influ-
ence the level of chemotherapy-induced neutropenia, and
only those patients who do not achieve neutropenia with
standard doses may benefit from intensification of chemo-
therapy. The evidence would suggest that adapting to a
dose-dense protocol may be the most effective way to in-
tensify chemotherapy. The results show that patients
achieving grade ≥1 have a statistically significant survival
advantage. This allows the possibility of using a simple
standard haematological measurement to adjust dose,
whereby dose is adjusted until neutropenia NCI CTCAE
grade ≥1 is achieved, after which treatment would be
maintained at the same dosing level.
The potential mechanisms that may explain why

chemotherapy-induced neutropenia is associated with
improved survival include neutropenia as a marker of
cancer stem cell death [22, 31]. Other studies have
proposed that neutrophils may be involved in the control
of the microenvironment in sites of metastatic spread
[32–34]. Chia et al. [35] comment that toxicity and clinical
outcome may be more likely to correlate when the thera-
peutic agent targets the biological driver of the disease dir-
ectly, for example, sunitinib-associated hypertension [36].
Although the mechanism behind the association between
chemotherapy-induced neutropenia and clinical outcome
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is unclear, this study, in conjunction with previously pub-
lished data [2-4], provides strong evidence that this associ-
ation is real and clinically relevant.
Moderate-severe fatigue (NCI CTCAE ≥2) may be

associated with a reduced BCSS. This effect was signifi-
cant in the univariable analysis of fatigue across all treat-
ments (HR = 1.24; 95 % CI, 1.07–1.43; P = 0.004) but on
multivariable analysis BCSS (HR = 1.17; 95 % CI, 0.99–
1.37; P = 0.06) became less significant. However, analysis
of the treatment regimens showed that there was a
statistically significant association between moderate-
severe fatigue and BCSS in patients treated with ECMF
(Additional file 1: Table S4). The patient characteris-
tics across all the trials is similar, although 20 % of pa-
tients in NEAT and BR9601 had fatigue classified as
grade ≥2, in comparison to only 10 % in tAnGo and
Neo-tAnGo. It is notable that 18 % of NEAT and
BR9601 had a pre-treatment PS ≥1, in comparison to
only 8 % and 4 % of tAnGo and Neo-tAnGo patients,
respectively (Additional file 1: Table S1). Trial eligibility
criteria required that patients must have a PS ≤2. It is un-
clear whether this difference in baseline PS alone accounts
for the increased levels of moderate-severe fatigue seen in
NEAT and BR9601; however, reduced pre-treatment PS
would be likely to increase the risk of severe fatigue during
treatment [10, 11].

Conclusions
This large and comprehensive study has shown a sta-
tistically significant association between improved sur-
vival and neutropenia (using toxicity classification
NCI CTCAE ≥1 or ≥3). This association is clinically
relevant and has the potential to be further tested in
neutropenia-adapted treatment regimens within clin-
ical trials to assess its potential to improve clinical
outcome. This study shows that patients with normal
or reduced BMI experience greater rates of neutro-
penia in comparison to overweight and obese pa-
tients. This is particularly relevant in populations
where increasing levels of obesity may mean that a
significant proportion of breast cancer patients are re-
ceiving sub-optimal chemotherapy doses. This study
also indicates that chemotherapy-induced fatigue may
be an indicator of poor clinical outcome. Patients’
pre-treatment performance status needs to be adequately
assessed and levels of treatment-induced fatigue need to
be carefully monitored and moderated.

Availability of data and materials
Data supporting these findings is held by the Trial
Management Group for PGSNPS study, where the
original concept for this analysis was designed. Any ac-
cess requires appropriate ethical approvals and would be
assessed by the Trial Management Group which includes

the respective Chief Investigators of the clinical trials
and PGSNPS, and would require a specific Data Trans-
fer Agreement.
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