5 research outputs found

    Prognostic Impact of High Baseline Stromal Tumor-Infiltrating Lymphocytes in the Absence of Pathologic Complete Response in Early-Stage Triple-Negative Breast Cancer

    No full text
    High stromal tumor-infiltrating lymphocytes (sTILs) are associated with an improved pathologic complete response (pCR) and survival in triple-negative breast cancer (TNBC). We hypothesized that high baseline sTILs would have a favorable prognostic impact in TNBC patients without a pCR after neoadjuvant chemotherapy (NACT). In this prospective NACT study, pretreatment biopsies from 318 patients with early-stage TNBC were evaluated for sTILs. Recursive partitioning analysis (RPA) was applied to search for the sTIL cutoff best associated with a pCR. With ≥20% sTILs identified as the optimal cutoff, 33% patients had high sTILs (pCR rate 64%) and 67% had low sTILs (pCR rate 29%). Patients were stratified according to the sTIL cutoff (low vs. high) and response to NACT (pCR vs. residual disease (RD)). The primary endpoint was event-free survival (EFS), with hazard ratios calculated using the Cox proportional hazards regression model and the 3-year restricted mean survival time (RMST) as primary measures. Within the high-sTIL group, EFS was better in patients with a pCR compared with those with RD (HR 0.05; 95% CI 0.01–0.39; p = 0.004). The difference in the 3-year RMST for EFS between the two groups was 5.6 months (95% CI 2.3–8.8; p = 0.001). However, among patients with RD, EFS was not significantly different between those with high sTILs and those with low sTILs (p = 0.7). RNA-seq analysis predicted more CD8+ T cells in the high-sTIL group with favorable EFS compared with the high-sTIL group with unfavorable EFS. This study did not demonstrate that high baseline sTILs confer a benefit in EFS in the absence of a pCR

    PTEN in triple-negative breast carcinoma: protein expression and genomic alteration in pretreatment and posttreatment specimens

    No full text
    Background: Recent advances have been made in targeting the phosphoinositide 3-kinase pathway in breast cancer. Phosphatase and tensin homolog (PTEN) is a key component of that pathway. Objective: To understand the changes in PTEN expression over the course of the disease in patients with triple-negative breast cancer (TNBC) and whether PTEN copy number variation (CNV) by next-generation sequencing (NGS) can serve as an alternative to immunohistochemistry (IHC) to identify PTEN loss. Methods: We compared PTEN expression by IHC between pretreatment tumors and residual tumors in the breast and lymph nodes after neoadjuvant chemotherapy in 96 patients enrolled in a TNBC clinical trial. A correlative analysis between PTEN protein expression and PTEN CNV by NGS was also performed. Results: With a stringent cutoff for PTEN IHC scoring, PTEN expression was discordant between pretreatment and posttreatment primary tumors in 5% of patients ( n  = 96) and between posttreatment primary tumors and lymph node metastases in 9% ( n  = 33). A less stringent cutoff yielded similar discordance rates. Intratumoral heterogeneity for PTEN loss was observed in 7% of the patients. Among pretreatment tumors, PTEN copy numbers by whole exome sequencing ( n  = 72) were significantly higher in the PTEN-positive tumors by IHC compared with the IHC PTEN-loss tumors ( p  < 0.0001). However, PTEN-positive and PTEN-loss tumors by IHC overlapped in copy numbers: 14 of 60 PTEN-positive samples showed decreased copy numbers in the range of those of the PTEN-loss tumors. Conclusion: Testing various specimens by IHC may generate different PTEN results in a small proportion of patients with TNBC; therefore, the decision of testing one versus multiple specimens in a clinical trial should be defined in the patient inclusion criteria. Although a distinct cutoff by which CNV differentiated PTEN-positive tumors from those with PTEN loss was not identified, higher copy number of PTEN may confer positive PTEN, whereas lower copy number of PTEN would necessitate additional testing by IHC to assess PTEN loss. Trial registration: NCT02276443
    corecore