7 research outputs found

    Digital Twin Applications in Urban Logistics:An Overview

    Get PDF
    Urban traffic attributed to commercial and industrial transportation is observed to largely affect living standards in cities due to external effects pertaining to pollution and congestion. In order to counter this, smart cities deploy technological tools to achieve sustainability. Such tools include Digital Twins (DT)s which are virtual replicas of real-life physical systems that control the systems. Research points that DTs can be very beneficial in how they control a physical system by constantly optimizing its performance. The concept has been extensively studied in other technology-driven industries like manufacturing. However, little work has been done with regards to their application in urban logistics. In this paper, we seek to provide a framework by which DTs could be easily adapted to urban logistics networks. To do this, we provide a characterization of key factors in urban logistics for dynamic-decision making. We also survey previous research on DT applications in urban logistics as we found that a holistic overview is lacking. Using this knowledge in combination with the characterization, we produce a conceptual model that describes the ontology, learning capabilities and optimization prowess of an urban logistics digital twin through its quantitative models. We finish off with a discussion on potential research benefits and limitations based on previous research and our practical experience

    Digital twin applications in urban logistics:an overview

    Get PDF
    Urban traffic attributed to commercial and industrial transportation is observed to largely affect living standards in cities due to external factors like pollution and congestion. To counter this, smart cities deploy technologies such as digital twins (DT)s to achieve sustainability. Research suggests that DTs can be beneficial in optimizing the physical systems they are linked with. The concept has been extensively studied in many technology-driven industries like manufacturing. However, little work has been done with regards to their application in urban logistics. In this paper, we seek to provide a framework by which DTs could be easily adapted to urban logistics applications. To do this, we survey previous research on DT applications in urban logistics as we found that a holistic overview is lacking. Using this knowledge in combination with the identification of key factors in urban logistics, we produce a conceptual model for the general design of an urban logistics DT through a knowledge graph. We provide an illustration on how the conceptual model can be used in solving a relevant problem and showcase the integration of relevant DDO methods. We finish off with a discussion on research opportunities and challenges based on previous research and our practical experience

    Digital twin applications in urban logistics:an overview

    Get PDF
    Urban traffic attributed to commercial and industrial transportation is observed to largely affect living standards in cities due to external factors like pollution and congestion. To counter this, smart cities deploy technologies such as digital twins (DT)s to achieve sustainability. Research suggests that DTs can be beneficial in optimizing the physical systems they are linked with. The concept has been extensively studied in many technology-driven industries like manufacturing. However, little work has been done with regards to their application in urban logistics. In this paper, we seek to provide a framework by which DTs could be easily adapted to urban logistics applications. To do this, we survey previous research on DT applications in urban logistics as we found that a holistic overview is lacking. Using this knowledge in combination with the identification of key factors in urban logistics, we produce a conceptual model for the general design of an urban logistics DT through a knowledge graph. We provide an illustration on how the conceptual model can be used in solving a relevant problem and showcase the integration of relevant DDO methods. We finish off with a discussion on research opportunities and challenges based on previous research and our practical experience

    Digital Twin Applications in Urban Logistics:An Overview

    No full text
    Urban traffic attributed to commercial and industrial transportation is observed to largely affect living standards in cities due to external effects pertaining to pollution and congestion. In order to counter this, smart cities deploy technological tools to achieve sustainability. Such tools include Digital Twins (DT)s which are virtual replicas of real-life physical systems that control the systems. Research points that DTs can be very beneficial in how they control a physical system by constantly optimizing its performance. The concept has been extensively studied in other technology-driven industries like manufacturing. However, little work has been done with regards to their application in urban logistics. In this paper, we seek to provide a framework by which DTs could be easily adapted to urban logistics networks. To do this, we provide a characterization of key factors in urban logistics for dynamic-decision making. We also survey previous research on DT applications in urban logistics as we found that a holistic overview is lacking. Using this knowledge in combination with the characterization, we produce a conceptual model that describes the ontology, learning capabilities and optimization prowess of an urban logistics digital twin through its quantitative models. We finish off with a discussion on potential research benefits and limitations based on previous research and our practical experience

    Optimizing the inventory and fulfillment of an omnichannel retailer: a stochastic approach with scenario clustering

    Get PDF
    We study an inventory optimization problem for a retailer that faces stochastic online and in-store demand in a selling season of fixed length. The retailer has to decide the initial inventory levels and an order fulfillment policy such that the expected total costs are minimized. We approximate the problem by a two-stage stochastic optimization on a reduced number of scenarios. For deciding the representative scenarios, we propose a new similarity measure and a novel technique that combines the framework of Good–Turing sampling and Linear Programming. On randomly generated instances, the proposed algorithm obtains an average cost reduction of 7.56% compared to a state-of-the-art algorithm in the literature. The proposed algorithm works considerably better for short time horizons and a relatively large proportion of in-store customers
    corecore