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A B S T R A C T

We study an inventory optimization problem for a retailer that faces stochastic online and in-store demand in
a selling season of fixed length. The retailer has to decide the initial inventory levels and an order fulfillment
policy such that the expected total costs are minimized. We approximate the problem by a two-stage stochastic
optimization on a reduced number of scenarios. For deciding the representative scenarios, we propose a new
similarity measure and a novel technique that combines the framework of Good–Turing sampling and Linear
Programming. On randomly generated instances, the proposed algorithm obtains an average cost reduction of
7.56% compared to a state-of-the-art algorithm in the literature. The proposed algorithm works considerably
better for short time horizons and a relatively large proportion of in-store customers.
1. Introduction

Fueled by the COVID19 pandemic, global e-commerce retail encom-
passed 19.6% of retail sales in 2021. It is estimated that worldwide
e-commerce sales will continue growing, reaching $7.385 trillion by
2025 and making up a 24.5% share of all retail sales (Lebow, 2021).
In recent years, an increasing number of retailers have chosen an
omnichannel strategy, where customers can buy products in brick-and-
mortar stores as well as online. Traditional retailers, such as Wal-Mart,
Carrefour, Target and Macy’s, who used to sell only through brick-
and-mortar stores, expanded online, to be able to offer their customers
a larger assortment of products and the possibility to shop from the
comfort of their homes (Nash, 2015). Recently, large e-commerce com-
panies such as Amazon and Google have purchased brick-and-mortar
stores, to offer their customers the opportunity to try the products
before purchasing them (Quinby, 2021). Many of these retailers use
a variety of channels to fulfill customers’ orders, such as dedicated
fulfillment centers or existing stores from where items can be sent
directly to customers or can be picked up (Nash, 2015).

Order fulfillment in an omnichannel environment is very complex.
First, retailers have to decide the type of facilities responsible for online
order fulfillment: distribution centers that integrate store replenishment
and online order fulfillment, dedicated fulfillment centers for online
orders, stores, or vendor facilities. While distribution centers offer the
advantage of economies of scale, the use of stores to fulfill online orders
can considerably reduce delivery time. For an in-depth discussion on
the different fulfillment strategies, we refer to Ishfaq and Raja (2018).
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E-mail addresses: a.g.m.abouelrous@tue.nl (A. Abouelrous), adriana.gabor@ku.ac.ae (A.F. Gabor), yqzhang@tue.nl (Y. Zhang).

Second, one needs to design a strategy for allocating online orders to
fulfillment centers. Mahar and Wright (2009) illustrate the advantage of
dynamically assigning orders to fulfillment centers as opposed to using
a static strategy. The benefits of dynamic fulfillment strategies can be
further enhanced if inventory is jointly optimized with fulfillment deci-
sions, as shown by Acimovic and Graves (2017) and Govindarajan et al.
(2021). However, integrating inventory for both types of customers
(online and in-store), as well as designing cost-effective fulfillment
decisions, is very complex and coupled with many practical difficulties
(Acimovic & Graves, 2017; Hübner et al., 2016).

In this paper, we study a joint fulfillment and inventory optimiza-
tion problem originally proposed in Govindarajan et al. (2021). The
omnichannel retailer has a set of facilities, that fulfill both online and
in-store orders. The goal is to decide the initial inventory at each
location for a horizon of 𝑇 periods, and a fulfillment strategy such
that the total expected costs of the retailer (holding, transportation and
penalty costs) are minimized. This problem is very difficult, due to the
uncertainty in demand and the combinatorial nature of the fulfillment
strategy.

We approximate this problem by a two-stage stochastic optimiza-
tion problem, in which we decide the initial inventory in the first
stage and find a fulfillment allocation in the second. To reduce the
computational burden of working with many scenarios, we propose
a novel method for scenario reduction, based on clustering scenarios
according to a predefined similarity measure. The main advantage
vailable online 8 October 2022
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of our method is that it does not require us to specify in advance
the number of scenarios. We use the L-shaped method to solve the
two-stage stochastic problem on the reduced number of scenarios and
find initial inventories. The initial inventories will then be used in a
dynamic fulfillment heuristic. Via numerical experiments, we show that
for short time horizons, the proposed algorithms can lead to an average
cost reduction of 11.81% compared to the literature. For longer time
horizons, the optimal solutions obtained by our algorithm are 3.93%
lower on average than the literature.

The paper is organized as follows. Section 2 discusses research
related to the proposed problem. Section 3 describes the problem and
the mathematical optimization model. Section 4 describes the proposed
solution approach. Section 5 describes the numerical experiments and
discusses the quality of the obtained solution. Section 6 asserts our
conclusions.

2. Related work

We divided the related literature into four categories: (i) inventory
for omnichannel retail, (ii) fulfillment strategies, (iii) joint inventory
and fulfillment strategies, and (iv) methods for scenario reduction in
multi-period stochastic optimization.

Inventory management for omnichannel retail Inventory models for
omnichannel retail are closely related to inventory models with multi-
ple classes of customers, where the inventory is shared among different
demand classes. These problems have been studied for a long time in
the Operations Research Literature. For an in-depth discussion of multi-
class inventory strategies we refer to Arslan et al. (2007), Deshpande
et al. (2003), Gabor et al. (2018), Vicil (2021) and the references
therein. However, most of the literature on multi-class inventory fo-
cuses mainly on one location, whereas omnichannel retail usually
includes several locations that share the inventory for the online de-
mand with other locations and with the in-store demand at the same
location.

In the omnichannel retail context, Bendoly (2004) discusses the ben-
efits of integrated inventory for the online and offline demand in case
of static fulfillment policies. Alptekinoğlu and Tang (2005) extends the
study to a multi-echelon system with two sales channels. Seifert et al.
(2006) propose a mathematical model for an inventory management
system where a warehouse handles online orders, and in case of stock-
out, the orders can be delivered from stores. Gabor et al. (2022) study a
two-echelon inventory model for a retailer of slow-moving items, where
a warehouse serves online customers and replenishes a set of brick-
and-mortar stores. They show that allowing customers to migrate to
the online channel in exchange of a discount can lead to considerable
savings. Algorithms for dynamic pricing and inventory models in the
omnichannel context have been studied in Harsha et al. (2019).

Fulfillment strategies (Mahar & Wright, 2009) show that a ‘‘quasi-
dynamic’’ allocation policy that assigns accumulated online sales to
fulfillment locations based on expected inventory, shipping, and cus-
tomer wait costs can lead to a considerable decrease in transporta-
tion and inventory costs. For single-item orders, Acimovic and Graves
(2015) propose an LP-based heuristic that makes fulfillment decisions
by minimizing the immediate outbound shipping cost plus an estimate
of future expected outbound shipping costs. The heuristic is able to
reduce the outbound shipping cost of a myopic heuristic by 1%. Note
that since the shipping costs are an important component of the cost
for omnichannel retailers, reducing the outbound shipping costs by
1% is significant. For fulfillment strategies in case of multi-item or-
ders, Jasin and Sinha (2015) propose LP-based heuristics. Torabi et al.
(2015) study the impact of jointly taking decisions on fulfillment and
transshipment of inventory for an e-tailer. They propose an MIP and a
Bender decomposition to address this problem. In recent work, Akyüz
et al. (2022) propose an iterative matheuristic based on the solution of
the set covering model and local search to solve the multi-item order
2

fulfillment problem. A dynamic fulfillment heuristic for the case with
random demand and random shipping costs is proposed in Bayram and
Cesaret (2021). The advantages of joint dynamic pricing and fulfillment
are discussed in Lei et al. (2018), who propose to solve this problem via
an LP-based heuristic.

Joint Inventory and fulfillment strategies Although combining dynamic
fulfillment with inventory can reduce costs considerably, the joint op-
timization problem is very complex, due to the uncertainty in demand
and the fact that orders can be fulfilled from different locations. Aci-
movic and Graves (2017) focuses on methods to allocate inventory in
an e-commerce network under periodic review. More precisely, their
goal is to reduce demand spillover, i.e., demand reallocated to another
fulfillment center due to stock-out. Following a similar idea, DeValve
et al. (2021) study the impact of combining an inventory allocation pol-
icy based on a stochastic program with a fulfillment policy that restricts
the spillover demand. Govindarajan et al. (2021) analyze the joint
inventory and fulfillment problem in the context of an omnichannel
retailer, where inventory at stores may be used to fulfill online orders.
They propose a procedure in which initial inventory is calculated
based on a single period approximation; subsequently, at each location,
inventory is reserved for in-store demand, and a transportation problem
is used to dynamically assign online orders to fulfillment locations.
In this paper, we propose a novel heuristic for solving the problem
described in Govindarajan et al. (2021). The heuristic uses a two-
stage approximation with a reduced number of scenarios, based on
cost-dependent similarity measures. Unlike (Govindarajan et al., 2021),
our method does not assume that inventory for in-store customers is
pooled among locations. This will lead to higher inventory and reduced
fulfillment costs.

Multi-stage stochastic optimization Multi-stage stochastic optimization
has been an important tool in modeling supply chain, logistics, and
planning problems under uncertainty. It has been extensively used
for locating facilities under uncertainty (Parragh et al., 2022; Snyder,
2006), vehicle routing (Gendreau et al., 1996; Oyola et al., 2018),
inventory (Placido dos Santos & Oliveira, 2019), and planning and
scheduling problems (Elçi & Hooker, 2022). However, in the case of
a large number of scenarios, the application of classical methods may
lead to large computational times. An important question in stochastic
optimization is whether the number of scenarios defining the problem
can be reduced without compromising the quality of the solution
obtained. For two-stage convex stochastic optimization problems with
a discrete probability distribution P, in a series of papers, Dupačová
et al. (2003), Heitsch and Römisch (2003, 2007), propose efficient
algorithms to determine a subset of scenarios of prescribed cardinality
and a probability measure based on this set that is the closest to the
initial distribution in terms of a natural probability metric. Extensions
of these techniques to the multistage settings are discussed in Pflug
and Pichler (2014). Worst-case bounds for scenario reduction based
on the Wasserstein metric and an exact mixed-integer formulation are
proposed in Rujeerapaiboon et al. (2018). Another approach for gener-
ating scenarios is proposed in Høyland et al. (2003) and Høyland and
Wallace (2001), where a set of scenarios that match certain statistical
properties, such as moments and correlations are constructed. While
these approaches give promising results, the main issue remains in
deciding the number of scenarios and the essential properties to be
captured in order to obtain a near-optimal solution.

A popular method for solving stochastic optimization problems is
the Sample Average Approximation (SAA). In this approach, a random
sample is generated and the expected value function is approximated
by the corresponding sample average function (Ahmed & Shapiro,
2002; Kim et al., 2015; Kleywegt et al., 2002). The approach has
been successfully applied to vehicle routing problems with stochastic
demand (Verweij et al., 2003), supply chain network design with
facility disruptions (Li & Zhang, 2018) and re-positioning of empty
containers (Long et al., 2012).

From the perspective of proposed methodology, our paper is in

line with Bertsimas and Mundru (2022), where a scenario reduction
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method based on the cost structure of the optimization problem is
proposed. Their algorithm is inspired by Lloyd’s algorithm for k-means
clustering. It starts with a set of 𝑛 scenarios, that are assigned to a set of

≤ 𝑛 clusters. Each scenario is assigned to the ‘‘closest’’ cluster w.r.t.
a distance defined based on the costs of the scenarios. Subsequently, in
each cluster, a new representative is chosen, that minimizes the cluster
divergence. The procedure is repeated until the differences between the
clusters obtained in consecutive iterations are small. In this research,
we also use cost-based similarity measures to cluster scenarios. There
are two important differences between the algorithm proposed in this
paper and the one in Bertsimas and Mundru (2022). First, our algorithm
does not require the number of desired reduced scenarios as input, as
in many cases it is hard to decide in advance how many scenarios are
necessary for a good approximation. Instead, this number is decided
dynamically, based on a cost-based similarity measure between scenar-
ios and an estimate of the probability of finding a new cluster. Second,
scenarios are assigned to the same cluster if the similarity measure with
the cluster center is below a certain threshold. If scenarios are different
from each other, the algorithm will choose to construct more clusters.
The threshold guarantees that scenarios assigned to the same cluster
are close to each other, so our algorithm does not need to control for
divergence within a cluster by re-optimizing the cluster centers and
reallocating scenarios to clusters.

Contribution: We propose to solve the joint inventory and fulfill-
ment optimization problem by an algorithm that decides on the inven-
tory levels by solving an approximate two-stage stochastic optimization
problem and then uses them in a dynamic fulfillment allocation pro-
cedure. The two-stage optimization problem is solved on a reduced
number of scenarios. To select scenarios, we propose a novel similarity
measure, that takes into account the total costs under full information.
The number of scenarios is decided based on the Good–Turing estimator
and adapts to the input parameters. The method differs from the one
in Govindarajan et al. (2021), where the initial inventories are obtained
by pooling in-store and online demand. We compare our algorithm with
the one proposed in Govindarajan et al. (2021) and show that it can
lead to considerable cost reductions, especially when the proportion
of in-store customers is relatively large. The proposed methodology is
quite general and can be adapted to solve other stochastic optimization
problems.

3. Problem description

Consider an omnichannel retailer that operates a set 𝑁 of facilities,
situated at different locations, each location covering a certain demand
region. Without loss of generality, we assume that at each location,
there are two types of demand: in-store and online demand. We will
refer to these facilities as stores, although by setting the in-store de-
mand to zero, the locations can be viewed as standard online fulfillment
centers.

The selling season consists of 𝑇 time periods. As in Govindarajan
et al. (2021), we assume that inventory is purchased only at the begin-
ning of the season and there is no other replenishment opportunity. The
in-store and online demand in region 𝑖 ∈ 𝑁 at time 𝑡 are denoted by
𝑠,𝑡

𝑖 and 𝑜,𝑡
𝑖 respectively. Both types of demand are assumed integer,

stochastic and stationary, with cumulative distribution functions 𝐹 𝑠
𝑖 (.)

and 𝐹 𝑜
𝑖 (.), respectively.

In-store demand is fulfilled immediately from the inventory at the
specific store if available, while online demand can be fulfilled from
any of the stores, at the end of a time period. Hence, fulfillment
decisions in a period are taken after information on the demand in that
period becomes available, but under uncertainty regarding demand in
future periods. Demand that cannot be fulfilled is considered lost and a
penalty is incurred. We denote the penalty for unsatisfied in-store and
online demand by 𝑝𝑠 and 𝑝𝑜, respectively. The holding cost per unit of
inventory per time unit will be denoted by ℎ. We further denote by 𝑠𝑖𝑗
the costs of fulfilling online demand in region 𝑗 from a store in region 𝑖,
3

𝑖 ≠ 𝑗. We assume that transportation costs within a region are the same
for all 𝑁 regions and given by 𝑠. The goal is to find the initial inventory
and a fulfillment policy such that the total holding costs, fulfillment,
and penalty costs over the time horizon are minimized.

The following variables will be used throughout the paper:

• 𝑥𝑡𝑖: inventory level at location 𝑖 at the beginning of period 𝑡
• 𝑧𝑡𝑖: fulfilled in-store demand at location 𝑖 in period 𝑡
• 𝑦𝑡𝑖𝑗 part of the online demand in region 𝑗 fulfilled from the store

in region 𝑖 in period 𝑡

Let 𝐱𝑡 = (𝑥𝑡𝑖)𝑖∈𝑁 , 𝐳𝑡 = (𝑧𝑡𝑖)𝑖∈𝑁 and 𝐲𝑡 = (𝑦𝑡𝑖𝑗 )𝑖,𝑗∈𝑁 , for 𝑡 ∈ {1,… , 𝑇 }.
et 𝐃𝑡 = (𝐷𝑠,𝑡

𝑖 , 𝐷𝑜,𝑡
𝑖 )𝑖∈𝑁 be the vector of stochastic demands (in-store and

nline) in period 𝑡, and 𝐝𝑡 be the vector of realized demand in period 𝑡.
t the end of period 𝑡, after demand in period 𝑡 is realized, the costs till

he end of the horizon are given by the following dynamic program:

𝑡(𝐱𝑡,𝐝𝑡) = min
𝑧𝑡 ,𝑦𝑡∈𝛥

[

𝑄(𝐱𝑡, 𝐲𝑡, 𝐳𝑡,𝐝𝑡) + 𝐄(𝐶𝑡+1(𝐱𝑡+1,𝐃𝑡+1))
]

, (1)

here

(𝐱𝑡, 𝐲𝑡, 𝐳𝑡,𝐝𝑡) =
∑

𝑖∈𝑁
ℎ(𝑥𝑡𝑖 − 𝑧𝑡𝑖 −

∑

𝑗∈𝑁
𝑦𝑡𝑖𝑗 ) +

∑

𝑖∈𝑁
𝑝𝑠(𝑑

𝑠,𝑡
𝑖 − 𝑧𝑡𝑖)

+

+
∑

𝑗∈𝑁
𝑝𝑜(𝑑

𝑜,𝑡
𝑗 −

𝑁
∑

𝑖=1
𝑦𝑡𝑖𝑗 )

+ +
∑

𝑖∈𝑁
𝑠𝑦𝑡𝑖𝑖 +

∑

𝑖∈𝑁

𝑁
∑

𝑗=1∶𝑗≠𝑖
𝑠𝑖𝑗𝑦

𝑡
𝑖𝑗 , (2)

ith 𝑎+ = max{𝑎, 0}. The first term of the summation in 𝑄(𝐱𝑡, 𝐲𝑡, 𝐳𝑡,𝐝𝑡)
epresents the holding costs, the second and the third term the in-store
nd online penalties, while the last two terms correspond to the online
rder fulfillment costs at the end of period 𝑡.

The set 𝛥 is defined as:

= {(𝐳𝑡, 𝐲𝑡) ∈ Z|𝑁|

+ × Z|𝑁|×|𝑁|

+ ∶ 𝑧𝑡𝑖 ≤ 𝑑𝑠,𝑡𝑖 ,
∑

𝑖∈𝑁
𝑦𝑡𝑖𝑗 ≤ 𝑑𝑜,𝑡𝑗 , 𝑥𝑡+1𝑖 = 𝑥𝑡𝑖 − 𝑧𝑡𝑖 −

∑

𝑗∈𝑁
𝑦𝑡𝑖𝑗 , 𝑥

𝑡
𝑖 ≥ 0}, (3)

here the first and second constraint sets ensure that the inventory
sed to fulfill in-store and online demand do not exceed the respective
emand in any period; the third constraint relates the inventories in
ubsequent periods, while the last constraint ensures a non-negative
nventory in each period.

At the end of the horizon, left-over inventory incurs a per-unit cost
, resulting in the boundary condition:

𝑇 (𝐱𝑇 ,𝐝𝑇 ) = min
(𝑧𝑇 ,𝑦𝑇 )∈𝛥)

[

𝑄(𝐱𝑇 , 𝐲𝑇 , 𝐳𝑇 ,𝐝𝑇 ) + ℎ𝐱𝑇+1],

or any realization 𝐝𝑇 of the demand in period 𝑇 .
The goal is to determine the initial inventory 𝐱𝟏 = (𝑥1𝑖 )𝑖∈𝑁 , such that

1(𝐱𝟏) = 𝐄[𝐶1(𝐱1,𝐃1)] is minimized.
Before describing our algorithm in detail, we study the case in which

ll the demand information is known. We will refer to the variant of (1),
n which the initial inventory is given and the demand realizations at
very location and every time period are known as the full-information
roblem with initial inventory (FINV).

Let 𝛺 be the set of all possible demand scenarios, where a demand
cenario is a vector of demand realizations 𝜔 = (𝑑𝑠,𝑡𝑖 , 𝑑𝑜,𝑡𝑖 )𝑖∈𝑁,𝑡∈𝑇 .

The full-information problem corresponding to initial inventory 𝑥1

nd scenario 𝜔 = (𝑑𝑠,𝑡𝑖 , 𝑑𝑜,𝑡𝑖 )𝑖∈𝑁,𝑡∈𝑇 reduces to minimizing the following
bjective:

𝐹𝐼𝑁𝑉 ) �̃�(𝐱𝟏, 𝜔) = min (𝑥𝑡 ,𝑧𝑡 ,𝑦𝑡)∈𝛥
∑

𝑡∈𝑇

(

∑

𝑖∈𝑁
ℎ𝑥𝑡𝑖 +

∑

𝑖∈𝑁
𝑝𝑠(𝑑

𝑠,𝑡
𝑖 − 𝑧𝑡𝑖)

+
∑

𝑗∈𝑁
𝑝𝑜(𝑑

𝑜,𝑡
𝑗 −

∑

𝑖∈𝑁
𝑦𝑡𝑖𝑗 ) +

∑

𝑖∈𝑁
𝑠𝑦𝑡𝑖𝑖

+
∑

𝑖∈𝑁

∑

𝑗∈𝑁∶𝑗≠𝑖
𝑠𝑖𝑗𝑦

𝑡
𝑖𝑗

)

(4)

ith the set 𝛥 defined by:
1,𝜔 1
𝑥𝑖 = 𝑥𝑖 , ∀𝑖 ∈ 𝑁 (5)
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𝑧𝑡,𝜔𝑖 ≤ 𝑑𝑠,𝑡𝑖 , ∀𝑖 ∈ 𝑁,∀𝑡 ∈ 𝑇 (6)
∑

𝑖∈𝑁
𝑦𝑡,𝜔𝑖𝑗 ≤ 𝑑𝑜,𝑡𝑗 ∀𝑗 ∈ 𝑁,∀𝑡 ∈ 𝑇 (7)

𝑥𝑡+1,𝜔𝑖 = 𝑥𝑡,𝜔𝑖 − 𝑧𝑡,𝜔𝑖 −
∑

𝑗∈𝑁
𝑦𝑡,𝜔𝑖𝑗 ∀𝑖 ∈ 𝑁,∀𝑡 ∈ {1,… , 𝑇 − 1}, (8)

𝑡,𝜔
𝑖 , 𝑦𝑡,𝜔𝑖𝑗 ∈ Z+ ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑡 ∈ {1,… , 𝑇 } (9)

𝑥𝑡,𝜔𝑖 ∈ Z+ ∀𝑡 ∈ {2,… , 𝑇 } (10)

he objective function represents the holding, penalty, and transporta-
ion costs in scenario 𝜔. Constraints (5)–(10) have a similar explanation
o the constraints in (3). Constraints (5) establish the initial inventory.
onstraints (6) ensure that in each scenario 𝜔, the inventory used
o fulfill in-store demand at location 𝑖 does not exceed the in-store
emand, while constraints (7) ensure that the quantity transshipped to
egion 𝑗 does not exceed the online demand. Finally, constraints (8)
qual the initial inventory in period 𝑡+1 to the inventory at the end of
eriod 𝑡. Observe that the maxima used to describe the penalty terms
n (2) are not needed, as constraints (6)–(7) imply that these terms are
ositive. For the sake of brevity, in the rest of this section, we will omit
o index the variables by the scenario 𝜔.

roposition 1. For integer demands and integer initial inventory, the
P-relaxation of (FINV) has integer solutions.

roof. The proof can be found in Appendix A.
Remark that Proposition 1 allows solving (FINV) as an LP, which

esults in a decreased computational time.

. Approximate two-stage optimization

We propose to approximate the optimization problem (1) by a two-
tage stochastic program solved on a reduced set of demand scenarios.
ote that by doing so, the future fulfillment decisions are partly taken

nto account when deciding the initial inventory. The main idea of the
lgorithm is presented in Algorithm 1.

Algorithm 1
1: Step 1: Cluster the demand scenarios. Obtain a set of cluster centers

𝛺.
2: Step 2: Find initial inventory 𝐱𝟏 by solving a two-stage optimization

problem on the reduced set of demand scenarios 𝛺.
3: Step 3: In every time period, reserve inventory for in-store demand

and decide dynamically the fulfillment strategy.

We will next discuss each step of the algorithm in detail.

.1. Scenario clustering

To reduce the computational burden caused by the large number
f scenarios, we propose to construct a set of scenario clusters 𝛺 and
nly use one scenario from each cluster in our two-stage optimization
roblem. To construct 𝛺, we make use of some measures of similarity

(distance) 𝑆(𝜔,𝜔′) between two scenarios 𝜔 and 𝜔′.

Objective-based clustering (OC)
The similarity measure we propose is based on the costs of the full

information problem (FINV), given an estimate of the initial inventory.
More precisely, for two scenarios 𝜔,𝜔′ ∈ 𝛺, 𝑆𝑂𝐶 (𝜔,𝜔′) is defined

as follows:

𝑆𝑂𝐶 (𝜔,𝜔′) =
|�̃�(𝐱𝑒𝑠𝑡, 𝜔) − �̃�(𝐱𝑒𝑠𝑡, 𝜔′)|

�̃�(𝐱𝑒𝑠𝑡, 𝜔)
+

|�̃�(𝐱𝑒𝑠𝑡, 𝜔) − �̃�(𝐱𝑒𝑠𝑡, 𝜔′)|
�̃�(𝐱𝑒𝑠𝑡, 𝜔′)

, (11)

here �̃�(𝐱𝑒𝑠𝑡, 𝜔) is the optimal value of the full information problem
escribed in Section 3, for initial inventory 𝐱𝑒𝑠𝑡 and demand scenario
4

. As shown in Proposition 1, �̃�(𝐱𝑒𝑠𝑡, 𝜔) can be found by solving an
P problem, instead of an IP. At each location 𝑖, we choose the initial

inventory 𝑥𝑒𝑠𝑡𝑖 to be equal to the expected demand over the whole
ime horizon, that is, 𝑥𝑒𝑠𝑡𝑖 = ⌈𝑇 (𝜇𝑖𝑠 + 𝜇𝑖𝑜)⌉, where 𝜇𝑖𝑠 and 𝜇𝑖𝑜 are the
eans of the in-store and online demand. Note that 𝐱𝑒𝑠𝑡 is only used

or clustering the demand scenarios. The demand clusters will be used
ater to optimize the final values of the initial inventory 𝐱𝟏.

The following proposition states a few basic properties of the simi-
arity measure proposed in (11).

roposition 2. (a) For two scenarios 𝜔 and 𝜔′, with �̃�(𝐱𝑒𝑠𝑡, 𝜔) =
�̃�(𝐱𝑒𝑠𝑡, 𝜔′), 𝑆𝑂𝐶 (𝜔,𝜔′) = 0. (b) 𝑆𝑂𝐶 is symmetric, that is, for any two
scenarios 𝜔 and 𝜔′, 𝑆𝑂𝐶 (𝜔,𝜔′) = 𝑆𝑂𝐶 (𝜔′, 𝜔). (c) For any two scenarios 𝜔
and 𝜔′, 𝑆𝑂𝐶 (𝜔,𝜔′) = max(�̃�(𝐱𝑒𝑠𝑡 ,𝜔),�̃�(𝐱𝑒𝑠𝑡 ,𝜔′))

min(�̃�(𝐱𝑒𝑠𝑡 ,𝜔),�̃�(𝐱𝑒𝑠𝑡 ,𝜔′)) − min(�̃�(𝐱𝑒𝑠𝑡 ,𝜔),�̃�(𝐱𝑒𝑠𝑡 ,𝜔′))
max(�̃�(𝐱𝑒𝑠𝑡 ,𝜔),�̃�(𝐱𝑒𝑠𝑡 ,𝜔′)) (d) For

any three scenarios 𝜔, 𝜔′ and �̄� and 𝛤 > 0, such that 𝑆(𝜔, �̄�) ≤ 𝛤 and
𝑆(𝜔′, �̄�) ≤ 𝛤 , it holds that 𝑆(𝜔,𝜔′) ≤ 𝛤 (𝛤 + 2).

Proof. The proof can be found in Appendix A.
In Section 5 we will show that the total costs in our procedure are

insensitive to values of the initial inventory around 𝑥𝑒𝑠𝑡 used in the
clustering phase.

Clustering procedure
Scenarios are sampled and clustered by the following procedure.

Let 𝛺 be the set of cluster centers and for every 𝜔 ∈ 𝛺, denote by
𝐶𝜔 the cluster centered at 𝜔. Start with a random scenario and add
it to 𝛺. We sample and add scenarios to 𝛺 iteratively. If for a new
scenario 𝜔, 𝑆𝑂𝐶 (𝜔,𝜔′) < 𝛤 for some 𝜔′ ∈ 𝛺, add 𝜔 to the cluster 𝐶𝜔′ .
If 𝑆𝑂𝐶 (𝜔,𝜔′) > 𝛤 for all scenarios 𝜔′ ∈ 𝛺, form a new cluster 𝐶𝜔 and
add 𝜔 to 𝛺.

The procedure terminates when the probability of finding a new
cluster is below a threshold 𝜖. To estimate this probability, we use
the Good–Turing Estimator described in Good (2000). These estimators
were proposed by Turing to estimate the probability of missing entries
(words) in a sample of 𝑛 entries (words) from an unknown distribution.
The Good–Turing estimator has been used in several research areas,
such as natural language processing (McAllester & Schapire, 2000) and
optimization (Bertsimas & Stellato, 2020).

Let 𝐺0 be the fraction of the sample consisting of entries that occur
only once in the sample and let 𝑀0 be the total probability mass of the
items not occurring in the sample.

McAllister and Shapire (McAllester & Schapire, 2000, Theorem 9)
show that 𝑀0 can be bounded with probability at least 1 − 𝛿, by:

𝑀0 ≤ 𝐺0 + (2
√

2 +
√

3)
√

𝑙𝑛(1∕𝛿)
𝑛

, (12)

where 𝑛 is the size of the sample.
In our case, we define an entry as a cluster and say that a cluster

𝐶𝜔 has appeared 𝑘 times in the sample if |𝐶𝜔| = 𝑘. In other words,
e consider the scenarios assigned to a cluster to be ‘‘identical’’. The

lustering algorithm thus stops when

0 + (2
√

2 +
√

3)
√

𝑙𝑛(1∕𝛿)
𝑛

≤ 𝜖, (13)

where 𝜖 ∈ [0, 1] is a parameter chosen by the user.
A pseudo-code of the clustering algorithm is given in Algorithm 2.
Note that unlike the algorithm in Bertsimas and Mundru (2022),

Algorithm 2 does not require the number of final clusters to be known
in advance. In the proposed method, the number of clusters depends
on the similarity measure used and the value of 𝛤 . We believe that
clustering based on 𝛤 offers a few advantages. First, it is easier for
users to specify demand scenarios they consider similar in terms of
cost similarity, rather than the number of desired clusters. Second, by
Proposition 2, the similarity of any two scenarios in the same cluster is
below 𝛤 (𝛤 + 2), which for small values of 𝛤 , it is close to 2𝛤 . In case

of a scenario that is not similar to the previously sampled scenarios,
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Algorithm 2 Objective-based Clustering (OC)
1: Input: 𝛤 , 𝛿, 𝜖.
2: Let 𝛺 = ∅.
3: while 𝐺0 + (2

√

2 +
√

3)
√

𝑙𝑛(1∕𝛿)
𝑚 > 𝜖 do

4: Sample 𝜔 ∈ 𝛺 and update the sample size 𝑛.
5: if 𝑆𝑂𝐶 (𝜔,𝜔′) ≤ 𝛤 , for some 𝜔′ ∈ 𝛺 then
6: Add 𝜔 to 𝐶𝜔′

7: else
8: Add 𝜔 to 𝛺
9: Declare 𝜔 the center of 𝐶𝜔.

10: end if
11: Update 𝐺0, the fraction of clusters with 1 scenario
12: end while

our method would simply increase the number of clusters and create
a new cluster. If the number of clusters is fixed, scenarios that differ
significantly from each other may be assigned to the same cluster
(see Bertsimas and Mundru (2022) and k-means clustering). Therefore,
these methods usually have an extra step in which points are reassigned
to the clusters and the cluster center is updated such that divergence is
reduced.

After the termination criterion is reached, we estimate the probabil-
ity 𝑃 (𝜔) of observing scenario 𝜔 ∈ 𝛺 by

(𝜔) =
|𝐶𝜔|

∑

𝜔′∈𝛺 |𝐶𝜔′ |
. (14)

Note that the above definition ensures that 𝑃 (⋅) is a properly defined
probability measure.

4.2. Two-stage optimization to find initial inventory

The set of cluster centers 𝛺 defined in Section 4.1 will be used as
emand scenarios in a two-stage stochastic program. In the first stage
f this stochastic program, we optimize the initial inventory levels 𝐱𝟏.
n the second stage, we take the fulfillment decisions 𝐳𝑡 and 𝐲𝑡 for
ach 𝑡 ∈ {1,… , 𝑇 } subject to the constraints imposed by the selected
emand scenarios 𝛺. Note that although 𝐳𝑡 and 𝐲𝑡 are not our final
ulfillment decisions, they are helping to incorporate demand behavior
nd fulfillment costs in deciding the initial inventory. The procedure is
ifferent from the one in Govindarajan et al. (2021), where the initial
nventory is defined by minimizing an approximation of the total costs
btained by assuming that the in-store demand can be cross-fulfilled
rom other locations.

We assume there are no first-stage constraints regarding the amount
f inventory we can order. Furthermore, there are no set-up costs in the
irst stage as all costs are incurred only after demand is realized in the
econd stage.

The two-stage optimization problem is defined as

min
𝟏∈Z+

∑

𝜔∈𝛺

𝑃 (𝜔)(𝐱𝟏, 𝜔) (15)

here 𝑃 (𝜔) is the probability that scenario 𝜔 occurs, given by (14) and
(𝐱𝟏, 𝜔) is estimated by (4). The two-stage stochastic program is solved
ith the L-shaped method, which applies a Benders decomposition

o the deterministic equivalent of the problem. For a description of
he L-shape method and Benders decomposition, we refer to (Benders,
962; Rahmaniani et al., 2017). The L-shape method iteratively solves
series of master problems and sub-problems. In our case, the master

roblem decides the initial inventory 𝐱𝟏 and the sub-problems solve
he second stage for a given 𝐱𝟏. It can be easily seen that the sub-
roblems can be decomposed into a set of full information problems,
ne for each scenario. This allows a fast implementation of the second
tage, in which the full information problems are solved in parallel.
5

oreover, recall that based on Proposition 1, for a given scenario 𝜔,
he linear relaxation of 𝐶(𝐱𝟏, 𝜔) will give an integer optimal solution.
ote that for each (𝐱𝟏, 𝜔), there exists a feasible solution, hence the dual
f this minimization problem is bounded. Thus, in each iteration, only
ptimality cuts are added to the master problem, as the feasibility cuts
re not necessary.

.3. Inventory reservation and demand fulfillment

In each period, demand is fulfilled in a dynamically, by using the
lgorithm proposed by Govindarajan et al. (2021) (see Algorithm 1). At
ach location 𝑖, in-store demand is fulfilled as much as possible. If the
emand exceeds the existing inventory, penalty costs 𝑝𝑠 are incurred.
rom the remaining inventory, say 𝑥𝑖𝑡, a quantity equal to min{𝑥𝑡𝑖, 𝑘

𝑡
𝑖} is

eserved for future in-store demand. Here, 𝑘𝑡𝑖 is found by solving a news-
endor problem with demand distribution 𝐹 𝑠,𝑡

𝑖 , equal to the cumulative
emand distribution over periods 𝑡+1,… , 𝑇 , inventory costs ℎ(𝑇 −𝑡+1),
nd penalty costs 𝑝𝑠. More precisely,

𝑡
𝑖 = (𝐹 𝑠,𝑡

𝑖 )−1
(

𝑝𝑠
ℎ(𝑇 − 𝑡 + 1) + 𝑝𝑠

)

.

Finally, to fulfill the online demand at the end of each period, we solve
a transportation problem, with capacities equal to the 𝑚𝑖𝑛{𝑥𝑡𝑖 −𝑘𝑡𝑖, 0} at
each location 𝑖 and transportation cost between locations 𝑖 and 𝑗 equal
to 𝑠𝑖𝑗 − ℎ − 𝑝𝑜.

. Numerical experiments

We conducted numerical experiments with the cost parameters
ased on (Govindarajan et al., 2021). We consider the selling horizon
∈ {3, 7}. We assume the following values for the cost parameters

𝑠 = 𝑝𝑜 ∈ {50, 100} and ℎ ∈ {1, 2}. Total demand at each location is
ssumed Poisson distributed with parameters 𝜆 ∈ {5, 16}. The Poisson
istribution is a commonly used distribution for inventory problems
nd has been used to study related problems as in Arslan et al. (2007),
eshpande et al. (2003), Gabor et al. (2022), Lei et al. (2018) and Vicil

2021). We vary the proportion of online demand 𝜋𝑜𝑛 ∈ {0.3, 0.5, 0.7, 1}.
ence, online and in-store demand are Poisson distributed with pa-

ameters 𝜆𝜋𝑜𝑛 and 𝜆(1 − 𝜋𝑜𝑛), respectively. Unless stated otherwise,
e consider a set of 10 locations (stores), uniformly distributed in 2D

quare of length 50. The transportation costs within a region are taken
qual to 𝑠 = 9.182 and the transportation cost between regions 𝑖 and
, with 𝑖 ≠ 𝑗 are equal to 𝑠𝑖𝑗 = 0.75‖𝐯𝐢−𝐯𝐣‖ + 𝑠 where 𝐯𝐢 represents the
ocation of fulfillment center 𝑖.

For the Good–Turing estimator, we use 𝛽 = 0.1 and 𝜖 = 0.1. In the
bjective-based clustering, we report the results for 𝛤 ∈ {1.5%, 3%}.
he mixed-integer programs were solved with Gurobi 9.5 and ran on an
ntel(R) Xeon(R) CPU X5650 @ 2.67 GHz with two 6-core processors.
he Benders master problem was solved with a MIP gap of 0.01 and
he sub-problems were solved in parallel on 20 threads.

For each case, we use the average cost of 1000 simulation runs for
he specific selling season length. For comparison, we implemented the
lgorithm described in Govindarajan et al. (2021): initial inventories
re found according to the equations in Proposition 7 and for fulfill-
ent, we implemented the dynamic algorithm described in Algorithm
. A detailed description of this algorithm can be found in Govindarajan
t al. (2021). Note that we use the same dynamic fulfillment algorithm
or our algorithm as well.

In the sequel, we will refer to this algorithm by GSU2021, and to
he OC-based approximation as OC.

This section is organized as follows: first, we discuss the impact of
he similarity parameter 𝛤 and of the time horizon on OC results, after
hich we analyze the cost structure of the final solutions. Subsequently,
e will analyze the impact of different arrival rates and cost parameters
n the solution obtained. We will conclude with an analysis of the
unning times and the number of clusters constructed by OC.
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Fig. 1. Comparison of OC for 𝛤 ∈ {1.5%, 3%}, 𝑇 ∈ {3, 7}.
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.1. Impact of the similarity parameter 𝛤

Fig. 1 compares the results of OC for different values of 𝛤 and 𝑇 .
or both 𝑇 = 3 and 𝑇 = 7, the results for the two values of 𝛤 are
omparable, with a slight increase in performance for smaller values of
. On average, the costs obtained with 𝛤 = 1.5% were 0.58% lower

han the costs obtained with 𝛤 = 3% for 𝑇 = 3, and 0.32% lower
or 𝑇 = 7. As the behavior of the algorithm is similar for 𝛤 = 1.5%
nd 𝛤 = 3%, the results discussed in the subsequent sections concern
= 1.5%.

.2. Cost structure of final solutions

Figs. 2(a)–2(b) present the cost structure of the OC final solutions
or different cases of (𝜋𝑜𝑛, 𝜆, ℎ, 𝑝𝑜) for 𝑇 = 3 and 𝑇 = 7. Detailed results
an be found in Appendix B.

In most of cases, the fulfillment costs are a large component of the
otal costs. For 𝑇 = 3, the fulfillment costs are on average 67% of
he costs, while for 𝑇 = 7, the fulfillment costs are on average 50%
f the costs. The holding costs are a higher percentage of the total
osts for 𝑇 = 7, since, due to the one-time replenishment policy, more
tems have to be kept in stock. As expected, for the same time horizon,
oth the fulfillment and holding costs increase as the average demand
ncreases (compare the costs for 𝜆 = 5 and 𝜆 = 16 in Figs. 2(a)–2(b)).
dditionally, we notice a decrease in holding costs and an increase in

ulfillment costs when the proportion of online customers increases.
he decrease in inventory and holding costs is because inventory for on-

ine demand is pooled among locations, hence fewer items are needed
n stock. On the contrary, when the proportion of in-store customers is
arge, more items have to be kept at each particular location, as there
s no pooling effect for in-store customers. Finally, observe that when
he demand is more variable (𝜆 = 16), it seems more profitable to have
ore inventory, as this decreases both the fulfillment and the lost-sales

osts.
For 𝑇 = 3, the fulfillment costs for OC are 9.8% lower than those

btained by GSU2021, while for 𝑇 = 7, the fulfillment costs of OC are
n average 4.9% lower (see Tables B.1 and B.2 in Appendix B). For
oth time horizons, the fulfillment costs are decreased by increasing
he inventory. Note that compared to GSU2021, OC incurs an average
ncrease in inventory costs of 32.05% for 𝑇 = 3, and 10.9% for 𝑇 = 7. As
consequence, the penalty costs are lower than those of GSU2021 (OC

ncurs on average 71% (88.64%) lower offline (online) penalty costs
or 𝑇 = 3 and 41% (65%) for 𝑇 = 7.

.3. Impact of problem parameters on the performance of OC

.3.1. Impact of time horizon
As can be seen in Figs. 3 and 4, OC performs better for shorter time
6

orizons. For 𝑇 = 3 and 𝛤 = 1.5%, the average improvement for OC 9
pon GSU2021 over all the cases is 11.81%, with a maximum decrease
n cost of 45.97%, obtained for the case (𝜋𝑜𝑛, 𝜆, ℎ, 𝑝𝑜) = (0.3, 5, 1, 100) and
minimum decrease of 2.08% obtained for (𝜋𝑜𝑛, 𝜆, ℎ, 𝑝𝑜) = (1, 16, 2, 50).

or 𝑇 = 7 and 𝛤 = 1.5%, the average improvement for OC upon
SU2021 over all the cases is 3.93%, with a maximum cost decrease of
2.11% for (𝜋𝑜𝑛, 𝜆, ℎ, 𝑝𝑜) = (0.3, 5, 1, 100) and a minimum cost increase
f 0.6% for (𝜋𝑜𝑛, 𝜆, ℎ, 𝑝𝑜) = (1, 16, 2, 50). Note that our algorithm resulted
n a cost increase compared to GSU2021 only in one case out of 64.

.3.2. Impact of arrival rates and proportion of in-store customers
Figs. 3 and 4 show the improvements obtained by OC compared to

SU2021 for the different values of (𝜋𝑜𝑛, 𝜆, ℎ). For both time horizons,
he highest improvements are obtained for 𝜆 = 5. For 𝑇 = 3, the average
mprovement for 𝜆 = 5 is 15.88%, while for 𝜆 = 16 is equal to 7.73%.
or 𝑇 = 7, the average improvement is 5.71% for 𝜆 = 5, while for
= 16, the difference in total costs between OC and GSU2021 is 2.16%.

Figs. 3 and 4 indicate that the improvement of OC upon GSU2021
ecreases as the proportion of online customers increases. For 𝑇 = 3
nd 𝜋𝑜𝑛 = 0.3, OC outperforms GSU2021, on average, by 21.73%, while
or 𝜋𝑜𝑛 = 0.5 and 𝑇 = 3, OC outperforms GSU2021, on average, by
2.66%. For 𝜋𝑜𝑛 = 0.7, the average cost decrease is 7.74%, while for the
ase of only online customers, the average improvement upon GSU2021
s 5.09%. For 𝑇 = 7, the average improvement decreases from 7.62%
or 𝜋𝑜𝑛 = 0.3 to 1.48% for 𝜋𝑜𝑛 = 1. Note that the lower performance
f GSU2021 for larger percentages of in-store customers is due to the
act that GSU2021 decides the initial inventories by pooling in-store
emand across locations. For a large percentage of online customers,
his effect diminishes.

.3.3. Impact of holding costs
Figs. 3 and 4 indicate that OC obtains a higher cost decrease for
= 1. For 𝑇 = 3, OC obtains an average cost decrease of 14.54%

or ℎ = 1, while for ℎ = 2 the average cost decrease is 9.07%. This
ehavior is to be expected, as OC stocks more than GSU2021, and thus
as higher holding costs and decreased fulfillment costs compared to
SU2021. As Table B.1 in Appendix B indicates, for 𝑇 = 3, OC reduces

he fulfillment costs incurred by GSU2021 by 9% on average, while it
ncreases the holding costs by 32%. For 𝑇 = 7 and ℎ = 1, OC leads to a
.83% cost decrease on average, while for ℎ = 2, there is a cost increase
n 2.04% on average.

.3.4. Impact of initial inventories 𝑥𝑒𝑠𝑡
Recall that the similarity measure proposed in Section 4 uses the

stimate 𝑥𝑒𝑠𝑡 to cluster scenarios. One scenario from each cluster is
hen chosen to decide the final initial inventories through a two-stage
tochastic optimization problem. In our experiments with 𝑁 = 10, the
nventory obtained by the two-stage optimization with OC clustering
s on average 24% higher than the initial estimate 𝑥𝑒𝑠𝑡 for 𝑇 = 3 and

% higher for 𝑇 = 7. For 𝑁 = 30, the average increase was 18% for
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Fig. 2. Cost structure of OC solutions for different values of (𝜋𝑜𝑛 , 𝜆, 𝑝𝑜 , ℎ).
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= 3 and 6% for 𝑇 = 7. As discussed in Section 5.2, inventory increase
esults in decreased fulfillment costs and penalty costs and the overall
ost reduction compared to GSU2021. Thus, re-optimizing the initial
nventory through the two-stage stochastic program is important for
apturing the variability of the problem.

.4. Number of clusters and running times

The number of clusters created for different values of the parameters
an be seen in 5(a)–6(b). By comparing Figs. 5 and 6, we can see that
or the same values of parameters, the number of clusters decreases
7

s

n 𝛤 . For 𝛤 = 1.5%, the average number of clusters is 98.98 (std =
32.77), while for 𝛤 = 3%, the average number of clusters is 52.26 (std.
7.15). Clearly, for smaller values of 𝛤 , fewer scenarios will be similar
nd thus grouped together, leading to a larger number of clusters.
owever, a smaller number of clusters usually leads to less accurate
pproximations.

In all cases, on average, the number of clusters created decreases in
𝑜𝑛, 𝜆, ℎ, and 𝑇 . Note that the average total costs are increasing in these
alues and the clustering procedure is cost dependent. For example, the
maller the 𝜋 , the lower the fulfillment costs, hence the total costs
𝑜𝑛
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Fig. 3. Percentage improvement of OC w.r.t. GSU2021, 𝛤 = 1.5%, T = 3.
Fig. 4. Percentage improvement of OC w.r.t. GSU2021, 𝛤 = 1.5%, T = 7.
Fig. 5. Number of clusters created for different problem parameters, 𝛤 = 1.5%.
5

𝑁
w

r

ill be lower. The larger the average costs, the more scenarios will be
lustered together for the same 𝛤 .

As expected, the average running time increases with the time
orizon. The average running time for OC with 𝑇 = 7 is 355.6 s (std =
0.27 s), while for 𝑇 = 3 is 218.11 s (std. = 64.41 s). Note that in this
roblem, the inventory decisions are taken once at the beginning of the
orizon, hence average running times of around 6 min. are reasonable.
8

.5. Impact of number of locations

In order to check the scalability of OC, we ran experiments with
= 30 locations. All the parameters remained the same but 𝛤 , which

as chosen to be 3% in order to reduce the computational time.
Figs. 7–8 and Tables B.3 and B.4 in Appendix B indicate that the

esults for 𝑁 = 30 follow the same pattern as for 𝑁 = 10. For
𝑇 = 3, the average improvement upon GSU2021 is 11.67%, while
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Fig. 6. Number of clusters created for different problem parameters, 𝛤 = 3%.
Fig. 7. Percentage improvement of OC w.r.t. GSU2021, 𝑁 = 30 𝛤 = 3%, T = 3.
Fig. 8. Percentage improvement of OC w.r.t. GSU2021, 𝑁 = 30, 𝛤 = 3%, T = 7.
for 𝑇 = 7, the average improvement is 2.83%. As with 𝑁 = 10, the
largest improvements for both time horizons are for 𝜆 = 5 and higher
percentage of in-store customers (𝜋𝑜𝑛 = 0.3 and 𝜋𝑜𝑛 = 0.5). For 𝑇 = 7
however, the percentage improvement are slightly lower for 𝑁 = 30
compared to 𝑁 = 10. Tables B.3 and B.4 in Appendix B indicate that
for 𝑁 = 30 and 𝑇 = 7, the average improvement for 𝜋 = 0.3 is
9

𝑜𝑛
7.17%, while for 𝜋𝑜𝑛 = 0.5 is 2.49%. However, for larger values of 𝜋𝑜𝑛,
OC and GSU2021 give comparable results (for 𝜋𝑜𝑛 = 0.7, the average
improvement upon GSU2021 was 1.08% while for 𝜋𝑜𝑛 = 1, the average
improvement was 0.61%). One can also notice that for 𝑁 = 30, 𝑇 = 7
and 𝜆 = 16, OC slightly under-performed GSU2021 in 7 out of 16 cases.

All these cases are related to higher holding costs (ℎ = 2), indicating
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that OC fails to store enough inventory or distribute the inventory
properly when the holding costs are high and demand is very variable.

Finally, the average running time for 𝑁 = 30 is 2115.73 s (𝑠𝑡𝑑 = 752
s) for 𝑇 = 3 and 2961 sec. (𝑠𝑡𝑑 = 943 s) for 𝑇 = 7. Considering these
decisions have to be taken only once in a season, the running times
are still acceptable, however, they are much higher than the running
times of GSU2021, where the inventory decisions are based on a simple
heuristic.

6. Conclusions and discussion

In this paper, we proposed a two-stage stochastic approximation
method for deciding the initial inventory of an omnichannel retailer,
that serves both online and in-store customers. The novelty of our
method consists in a new cost-based similarity measure for scenarios
and a cost-based (output-based) clustering procedure based on the
Good–Turing estimator. The number of clusters constructed by our
method depends on the parameters of the problem, thus offering more
flexibility than scenario reduction methods where the number of clus-
ters is pre-specified. We compared our method with the state-of-the
-art algorithm proposed in Govindarajan et al. (2021) (referred to as
GSU2021).

We showed that OC can lead to an average cost improvement of
7.87% for 𝑁 = 10 and 7.25% for 𝑁 = 30. In general, compared
to GSU2021, our algorithm leads to increased inventory, and thereby
reduced fulfillment and penalty costs. OC performs considerably better
for shorter time horizons and a larger proportion of in-store customers.
This can be explained by the fact that the performance of a two-stage
approximation reduces for larger time horizons. Moreover, the main
weakness of GSU2021, the pooling of in-store demand, vanishes when
the proportion of in-store customers is low, resulting in comparable
results for the two algorithms.

From managerial point of view, our experiments lead to the follow-
ing insights :

∙ For short time horizons, fulfillment costs are the major component
of the total costs. Therefore, in such cases, the focus should be on
having sufficient inventory since this decreases the probability of
fulfilling items from distant locations. For longer time horizons,
both holding and fulfillment costs are important. In these cases,
the findings suggest focusing on trying to balance the two costs.

∙ When the proportion of online customers increases, holding costs
can be reduced by pooling inventory among different locations
(stores). However, pooling inventory results in higher fulfillment
costs. Hence, the relationship between online and in-store de-
mand should be carefully taken into consideration when making
inventory decisions in an omnichannel environment.

∙ In situations with high demand variability, it is better to focus
on having sufficient inventory, as this can reduce both lost-sales
costs and fulfillment costs.

For future research, we recommend improving the scalability of the
algorithm to a large number of locations, a longer time horizons, and
a low proportion of in-store customers. Another interesting venue for
research is to study how to adapt the proposed scenario reduction
method to other two-stage stochastic problems.
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Appendix A. Proofs of main results

Proposition 3. For integer demands and integer initial inventory, the
LP-relaxation of (FINV) has integer solutions.

Proof. For fixed initial inventory 𝐱𝟏, (FINV) can be written as a mini-
mum cost network flow problem in the following network. Construct
a source 𝑂 and a sink 𝑈 . For each pair (𝑖, 𝑡), 𝑖 ∈ {1,… , 𝑁} and
𝑡 ∈ {1, 2,… , 𝑇 }, construct 3 nodes: (𝑖𝑖𝑛𝑣, 𝑡), (𝑖𝑠, 𝑡) and (𝑖𝑜, 𝑡). The first
ode represents the inventory on stock, the second corresponds to the
nventory used to satisfy in-store demand and the third represents the
nventory used to satisfy online demand, at location 𝑖, time 𝑡. Construct
n edge between 𝑂 and each node (𝑖𝑖𝑛𝑣, 1), 𝑖 ∈ 𝑁 of capacity equal
o the initial inventory 𝑥1𝑖 . Connect each node (𝑖𝑖𝑛𝑣, 𝑡) to (𝑖𝑠, 𝑡) by an
dge of capacity 𝑑𝑠,𝑡𝑖 , (𝑖𝑜, 𝑡) by an edge of capacity 𝑑𝑜,𝑡𝑖 and to (𝑗𝑜, 𝑡) for
very 𝑗 ∈ {1,… , 𝑁} by an edge of capacity 𝑥1𝑖 . Connect each node (𝑖𝑠, 𝑡)
o the sink 𝑈 , by an edge of capacity 𝑑𝑠,𝑡𝑖 and each node (𝑖𝑜, 𝑡) by an
dge of capacity 𝑑𝑜,𝑡𝑖 . Further, connect each node (𝑖𝑖𝑛𝑣, 𝑡) to (𝑖𝑖𝑛𝑣, 𝑡 + 1),
∈ {1,… , 𝑇 − 1} by an edge of cost ℎ and capacity 𝑥1𝑖 . Finally, connect

each node (𝑖𝑖𝑛𝑣, 𝑇 ), 𝑖 ∈ 𝑁 to the sink 𝑈 .
A representation of the network for two locations and three time

periods is given in Fig. A.9.
Note that any feasible solution of (𝐹𝐼𝑁𝑉 ) corresponds to a maximal

low in this network. More precisely, 𝑧𝑡𝑖 correspond to the flow between
odes (𝑖𝑖𝑛𝑣, 𝑡) and (𝑖𝑠, 𝑡), while 𝑦𝑡𝑖𝑗 to the flow between (𝑖𝑖𝑛𝑣, 𝑡) and (𝑗𝑜, 𝑡).
inally, 𝑥𝑡𝑖 represents the flow from (𝑖𝑖𝑛𝑣, 𝑡−1) to (𝑖𝑖𝑛𝑣, 𝑡). Constraints (6)
orrespond to flow capacity constraints along edges ((𝑖𝑠, 𝑡), 𝑈 ), 𝑡 ∈ 𝑇 ,
hile constraints (7) correspond to flow capacity constraints on the
dges ((𝑖𝑜, 𝑡), 𝑈 ), 𝑡 ∈ 𝑇 .

It is well known that the polytope corresponding to a network
low problem (circulation problem) with integer capacities is integer
Schrijver, 2003, Ch.13, Corollary13.10.b). This ensures that the LP
elaxation of an IP formulated over the polytope has integer solutions.
ence, if 𝐱1 ∈ 𝐙𝑁 and the demands are integer, the variables 𝑦𝑡𝑖𝑗 and
𝑡
𝑖 take integer values in the optimal solution.

roposition 4. (a) For two scenarios 𝜔 and 𝜔′, with �̃�(𝐱𝑒𝑠𝑡, 𝜔) =
̃(𝐱𝑒𝑠𝑡, 𝜔′), 𝑆𝑂𝐶 (𝜔,𝜔′) = 0. (b) 𝑆𝑂𝐶 is symmetric, that is, for any two
cenarios 𝜔 and 𝜔′, 𝑆𝑂𝐶 (𝜔,𝜔′) = 𝑆𝑂𝐶 (𝜔′, 𝜔). (c) For any two scenarios 𝜔
nd 𝜔′, 𝑆𝑂𝐶 (𝜔,𝜔′) = max(�̃�(𝐱𝑒𝑠𝑡 ,𝜔),�̃�(𝐱𝑒𝑠𝑡 ,𝜔′))

min(�̃�(𝐱𝑒𝑠𝑡 ,𝜔),�̃�(𝐱𝑒𝑠𝑡 ,𝜔′)) −
min(�̃�(𝐱𝑒𝑠𝑡 ,𝜔),�̃�(𝐱𝑒𝑠𝑡 ,𝜔′))
max(�̃�(𝐱𝑒𝑠𝑡 ,𝜔),�̃�(𝐱𝑒𝑠𝑡 ,𝜔′)) (d) For

any three scenarios 𝜔, 𝜔′ and �̄� and 𝛤 > 0, such that 𝑆(𝜔, �̄�) ≤ 𝛤 and
𝑆(𝜔′, �̄�) ≤ 𝛤 , it holds that 𝑆(𝜔,𝜔′) ≤ 𝛤 (𝛤 + 2).

Proof. Properties (a) and (b) follow directly from the definition of
𝑆𝑂𝐶 (𝜔,𝜔′). Property (c) follows directly by writing |𝑎 − 𝑏| = max{𝑎, 𝑏}−
min{𝑎, 𝑏} in the definition of 𝑆𝑂𝐶 .

Denote 𝐶(𝐱𝑒𝑠𝑡, 𝜔) = 𝑎, 𝐶(𝐱𝑒𝑠𝑡, 𝜔′) = 𝑏 and 𝐶(𝐱𝑒𝑠𝑡, �̄�) = 𝑐. Without loss
of generality, we may assume 𝑎, 𝑏, 𝑐 > 0.

Assume that
max{𝑎, 𝑐}

−
min{𝑎, 𝑐} ≤ 𝛤 (A.1)
min{𝑎, 𝑐} max{𝑎, 𝑐}
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Fig. A.9. Network representation of (FINV) for two locations and three time periods.
nd
max{𝑏, 𝑐}
min{𝑏, 𝑐}

−
min{𝑏, 𝑐}
max{𝑏, 𝑐}

≤ 𝛤 . (A.2)

Denote min{𝑎, 𝑏} = 𝑚 and max{𝑎, 𝑏} = 𝑀 . To prove (d), we
istinguish three cases.

ase 1: 𝑐 < 𝑚
If 𝑀 = 𝑎 and 𝑚 = 𝑏, inequality (A.1) implies 𝑀

𝑐 ≤ 𝛤 + 𝑐
𝑀 . As a

consequence,

𝑀
𝑚

− 𝑚
𝑀

= 𝑀
𝑐

𝑐
𝑚

− 𝑚
𝑀

≤ (𝛤 + 𝑐
𝑀

) 𝑐
𝑚

− 𝑚
𝑀

= 𝛤 𝑐
𝑚

+ 𝑐2 − 𝑚2

𝑚𝑀
≤ 𝛤 , (A.3)

where the last inequality follows fro the fact that 𝑐 < 𝑚.
Case 2: 𝑚 < 𝑐 < 𝑀
If 𝑀 = 𝑎 and 𝑚 = 𝑏, inequality (A.1) implies 𝑀

𝑐 ≤ 𝛤 + 𝑐
𝑀 , while

A.2) implies 𝑐
𝑚 ≤ 𝛤 + 𝑚

𝑐 . By multiplying these inequalities, we obtain

𝑀
𝑚

≤ (𝛤 + 𝑐
𝑀

)(𝛤 + 𝑚
𝑐
). (A.4)

Similarly, one can show that (A.4) holds when 𝑀 = 𝑏 and 𝑚 = 𝑎. It
follows that
𝑀
𝑚

− 𝑚
𝑀

≤ (𝛤 + 𝑐
𝑀

)(𝛤 + 𝑚
𝑐
) − 𝑚

𝑀
= 𝛤 2 + 𝛤 ( 𝑐

𝑀
+ 𝑚

𝑐
) ≤ 𝛤 (𝛤 + 2), (A.5)

where for (A.5) we used that 𝑐
𝑀 ≤ 1 and 𝑚

𝑐 ≤ 1.
Case 3: 𝑀 < 𝑐
Since 𝑚 < 𝑀 < 𝑐, then

𝑀
𝑚

− 𝑚
𝑀

≤ 𝑐
𝑚

− 𝑚
𝑐

≤ 𝛤 , (A.6)

where (A.6) follows from applying (A.1) if 𝑚 = 𝑎 and (A.2) if 𝑚 = 𝑏.
11
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Appendix B. Detailed numerical results

In the first column, we list the parameters that characterize the
test case; columns 2–5 contain the penalty, holding, and fulfillment
costs, while the last column contains the total costs. In the brackets
next to each cost figure, we report the percentage decrease compared
to Govindarajan et al. (2021).

Detailed results for OC clustering 𝑁 = 10

See Tables B.1 and B.2.

etailed results for OC clustering 𝑁 = 30

See Tables B.3 and B.4.
12
Table B.1
Results of OC for clustering for 𝑁 = 10, 𝛤𝑂𝐶 = 1.5% and 𝑇 = 3. Percentage decrease with respect to GSU2021 is shown in the
brackets.
(𝜋𝑜𝑛 , 𝜆, ℎ, 𝑝𝑜) Cost break-up Total cost

Off pen On pen Holding Fulfillment

(0.3, 5, 1, 50) 12 [77.95%] 51 [87.34%] 312 [−39.68%] 449 [3.54%] 823 [27.91%]
(0.3, 5, 1, 100) 11 [82.75%] 11 [98.08%] 327 [−40.91%] 542 [31.13%] 891 [45.98%]
(0.3, 5, 2, 50) 28 [64.72%] 60 [80.83%] 550 [−33.92%] 476 [6.7%] 1115 [15.35%]
(0.3, 5, 2, 100) 35 [66.41%] 15 [95.44%] 573 [−32.72%] 588 [28.01%] 1211 [27.9%]

(0.3, 16, 1, 50) 7 [76.17%] 54 [89.07%] 767 [−28.48%] 1375 [4.69%] 2203 [14.08%]
(0.3, 16, 1, 100) 8 [72.34%] 14 [96.23%] 745 [−21.28%] 1563 [22.52%] 2330 [23.21%]
(0.3, 16, 2, 50) 26 [48.11%] 165 [66.0%] 1303 [−13.83%] 1492 [1.0%] 2987 [6.32%]
(0.3, 16, 2, 100) 21 [69.97%] 16 [93.49%] 1447 [−22.67%] 1535 [22.68%] 3018 [13.11%]

Av. 𝜋 = 0.3 18 [69.8%] 48 [88.31%] 753 [−29.19%] 1003 [15.04%] 1822 [21.73%]

(0.5, 5, 1, 50) 2 [78.32%] 41 [87.77%] 310 [−43.39%] 731 [3.74%] 1085 [18.17%]
(0.5, 5, 1, 100) 4 [76.44%] 3 [98.24%] 323 [−46.2%] 771 [27.89%] 1101 [24.44%]
(0.5, 5, 2, 50) 10 [58.93%] 92 [68.52%] 510 [−28.23%] 760 [4.92%] 1373 [9.44%]
(0.5, 5, 2, 100) 8 [68.88%] 9 [95.92%] 562 [−33.85%] 838 [23.6%] 1417 [19.14%]

(0.5, 16, 1, 50) 1 [85.42%] 60 [86.07%] 759 [−29.04%] 2247 [2.11%] 3067 [7.66%]
(0.5, 16, 1, 100) 2 [69.7%] 1 [99.01%] 786 [−30.66%] 2306 [15.46%] 3095 [11.0%]
(0.5, 16, 2, 50) 5 [68.44%] 98 [78.75%] 1384 [−22.99%] 2312 [2.15%] 3799 [4.21%]
(0.5, 16, 2, 100) 7 [58.28%] 22 [88.48%] 1413 [−21.31%] 2396 [13.33%] 3838 [7.29%]

Av. 𝜋 = 0.5 5 [70.55%] 41 [87.85%] 756 [−31.96%] 1545 [11.65%] 2347 [12.67%]

(0.7, 5, 1, 50) 1 [66.2%] 32 [87.08%] 311 [−46.88%] 991 [2.73%] 1334 [9.74%]
(0.7, 5, 1, 100) 2 [76.32%] 6 [93.16%] 316 [−43.05%] 1024 [17.34%] 1348 [13.1%]
(0.7, 5, 2, 50) 4 [67.28%] 59 [78.36%] 527 [−36.02%] 1036 [3.23%] 1626 [6.67%]
(0.7, 5, 2, 100) 3 [68.97%] 4 [96.68%] 582 [−39.68%] 1066 [18.08%] 1654 [10.29%]

(0.7, 16, 1, 50) 0 [100.0%] 54 [87.52%] 767 [−30.88%] 3125 [0.94%] 3947 [5.52%]
(0.7, 16, 1, 100) 1 [55.56%] 3 [98.41%] 798 [−33.28%] 3176 [10.51%] 3978 [7.92%]
(0.7, 16, 2, 50) 0 [85.0%] 130 [73.8%] 1364 [−21.01%] 3171 [1.05%] 4666 [3.43%]
(0.7, 16, 2, 100) 1 [79.41%] 10 [95.4%] 1462 [−25.99%] 3256 [9.64%] 4729 [5.32%]

Av. 𝜋 = 0.7 2 [74.84%] 37 [88.8%] 766 [−34.6%] 2106 [7.94%] 2910 [7.75%]

(1.0, 5, 1, 50) 0 [**%] 36 [85.6%] 297 [−42.66%] 1416 [0.58%] 1748 [6.95%]
(1.0, 5, 1, 100) 0 [**%] 2 [97.72%] 325 [−47.3%] 1428 [11.75%] 1755 [8.3%]
(1.0, 5, 2, 50) 0 [**%] 82 [70.31%] 517 [−31.57%] 1438 [1.05%] 2037 [4.02%]
(1.0, 5, 2, 100) 0 [**%] 6 [94.91%] 557 [−34.13%] 1488 [10.71%] 2051 [6.75%]

(1.0, 16, 1, 50) 0 [**%] 38 [91.03%] 785 [−34.02%] 4479 [0.23%] 5303 [3.64%]
(1.0, 16, 1, 100) 0 [**%] 7 [95.54%] 781 [−28.98%] 4502 [6.65%] 5290 [5.18%]
(1.0, 16, 2, 50) 0 [**%] 158 [67.97%] 1358 [−20.67%] 4502 [0.58%] 6018 [2.08%]
(1.0, 16, 2, 100) 0 [**%] 13 [93.73%] 1414 [−20.66%] 4602 [5.87%] 6029 [3.84%]

Av. 𝜋 = 1.0 0 [**%] 43 [87.1%] 754 [−32.5%] 2982 [4.68%] 3779 [5.1%]

Av. 𝑇 = 3 6 [71.73%] 42 [88.01%] 757 [−32.06%] 1909 [9.83%] 2714 [11.81%]
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Table B.2
Results of OC for clustering for 𝑁 = 10, 𝛤𝑂𝐶 = 1.5% and 𝑇 = 7. Percentage decrease with respect to GSU2021 is shown in the
brackets.
(𝜋𝑜𝑛 , 𝜆, ℎ, 𝑝𝑜) Cost break-up Total cost

Off pen On pen Holding Fulfillment

(0.3, 5, 1, 50) 40 [51.76%] 214 [68.04%] 1419 [−15.81%] 1090 [−1.1%] 2763 [9.6%]
(0.3, 5, 1, 100) 42 [55.69%] 51 [92.55%] 1486 [−17.88%] 1390 [21.7%] 2969 [22.12%]
(0.3, 5, 2, 50) 97 [27.3%] 338 [40.85%] 2533 [−8.36%] 1153 [0.36%] 4120 [1.87%]
(0.3, 5, 2, 100) 100 [42.22%] 117 [78.21%] 2694 [−11.79%] 1472 [15.54%] 4382 [9.83%]

(0.3, 16, 1, 50) 27 [56.35%] 329 [64.96%] 4041 [−10.75%] 3242 [1.26%] 7639 [3.71%]
(0.3, 16, 1, 100) 31 [51.95%] 66 [90.17%] 4105 [−10.37%] 3691 [14.0%] 7893 [9.72%]
(0.3, 16, 2, 50) 85 [19.61%] 636 [34.3%] 7376 [−3.71%] 3437 [−1.14%] 11 533 [0.43%]
(0.3, 16, 2, 100) 86 [34.12%] 137 [78.11%] 7710 [−6.28%] 3935 [8.82%] 11 868 [3.71%]

Av. 𝜋 = 0.3 63 [42.37%] 236 [68.4%] 3921 [−10.62%] 2426 [7.43%] 6646 [7.62%]

(0.5, 5, 1, 50) 11 [50.76%] 248 [59.46%] 1381 [−14.17%] 1702 [0.93%] 3343 [6.2%]
(0.5, 5, 1, 100) 9 [63.49%] 23 [91.95%] 1501 [−20.27%] 1847 [19.48%] 3381 [12.21%]
(0.5, 5, 2, 50) 40 [20.22%] 379 [30.42%] 2458 [−6.03%] 1782 [0.25%] 4659 [0.86%]
(0.5, 5, 2, 100) 27 [42.43%] 106 [76.71%] 2672 [−11.65%] 2067 [10.64%] 4873 [6.46%]

(0.5, 16, 1, 50) 7 [48.36%] 287 [63.98%] 4001 [−10.15%] 5301 [0.26%] 9596 [1.66%]
(0.5, 16, 1, 100) 4 [65.87%] 36 [89.3%] 4140 [−11.59%] 5487 [9.51%] 9667 [4.49%]
(0.5, 16, 2, 50) 30 [15.92%] 700 [29.05%] 7299 [−3.31%] 5439 [−0.67%] 13 467 [0.17%]
(0.5, 16, 2, 100) 20 [31.21%] 120 [75.83%] 7708 [−6.23%] 5827 [5.63%] 13 676 [2.02%]

Av. 𝜋 = 0.5 19 [42.28%] 237 [64.59%] 3895 [−10.42%] 3682 [5.75%] 7833 [4.26%]

(0.7, 5, 1, 50) 5 [51.34%] 175 [64.66%] 1416 [−17.69%] 2319 [1.18%] 3913 [3.44%]
(0.7, 5, 1, 100) 4 [66.09%] 16 [92.05%] 1489 [−20.1%] 2456 [12.21%] 3965 [6.69%]
(0.7, 5, 2, 50) 24 [21.51%] 384 [23.36%] 2436 [−5.82%] 2390 [0.98%] 5234 [0.26%]
(0.7, 5, 2, 100) 10 [38.55%] 59 [79.22%] 2696 [−12.6%] 2600 [8.98%] 5365 [3.35%]

(0.7, 16, 1, 50) 3 [37.23%] 327 [59.87%] 3953 [−9.14%] 7364 [−0.24%] 11 647 [1.19%]
(0.7, 16, 1, 100) 2 [50.0%] 9 [97.31%] 4189 [−12.92%] 7534 [6.15%] 11 734 [2.86%]
(0.7, 16, 2, 50) 7 [23.59%] 671 [29.88%] 7355 [−4.18%] 7411 [0.27%] 15 444 [0.09%]
(0.7, 16, 2, 100) 6 [31.33%] 166 [68.33%] 7707 [−6.06%] 7888 [3.43%] 15 766 [1.25%]

Av. 𝜋 = 0.7 8 [39.95%] 226 [64.34%] 3905 [−11.06%] 4995 [4.12%] 9134 [2.39%]

(1.0, 5, 1, 50) 0 [**%] 181 [60.95%] 1398 [−16.35%] 3277 [0.49%] 4855 [2.05%]
(1.0, 5, 1, 100) 0 [**%] 11 [94.96%] 1489 [−19.5%] 3409 [7.47%] 4909 [4.52%]
(1.0, 5, 2, 50) 0 [**%] 335 [37.17%] 2487 [−8.14%] 3323 [0.08%] 6145 [0.23%]
(1.0, 5, 2, 100) 0 [**%] 46 [83.7%] 2741 [−13.74%] 3535 [5.4%] 6323 [1.7%]

(1.0, 16, 1, 50) 0 [**%] 301 [64.01%] 4049 [−11.67%] 10 361 [0.12%] 14 711 [0.84%]
(1.0, 16, 1, 100) 0 [**%] 16 [95.8%] 4214 [−13.69%] 10 609 [4.07%] 14 840 [2.02%]
(1.0, 16, 2, 50) 0 [**%] 805 [20.59%] 7347 [−4.05%] 10 481 [−0.38%] 18 632 [−0.63%]
(1.0, 16, 2, 100) 0 [**%] 149 [73.17%] 7707 [−6.26%] 10 896 [2.35%] 18 752 [1.13%]

Av. 𝜋 = 1.0 0 [**%] 230 [66.29%] 3929 [−11.67%] 6986 [2.45%] 11 146 [1.48%]

Av. 𝑇 = 7 22 [41.54%] 232 [65.9%] 3912 [−10.95%] 4522 [4.94%] 8689 [3.94%]
Table B.3
Results of OC for clustering for 𝑁 = 30, 𝛤𝑂𝐶 = 3% and 𝑇 = 3. The percentage decrease with respect to GSU2021 is shown in the
brackets.
(𝜋𝑜𝑛 , 𝜆, ℎ, 𝑝𝑜) Cost break-up Total cost

Off pen On pen Holding Fulfillment

(0.3, 5, 1, 50) 65 [67.63%] 38 [96.25%] 833 [−39.3%] 1529 [9.55%] 2466 [29.62%]
(0.3, 5, 1, 100) 76 [74.23%] 2 [99.94%] 879 [−38.29%] 1672 [13.81%] 2628 [53.04%]
(0.3, 5, 2, 50) 132 [55.69%] 62 [88.96%] 1462 [−31.29%] 1572 [14.42%] 3228 [15.31%]
(0.3, 5, 2, 100) 182 [58.12%] 3 [99.77%] 1495 [−29.28%] 1784 [23.8%] 3463 [32.86%]

(0.3, 16, 1, 50) 47 [66.7%] 63 [93.4%] 2077 [−26.45%] 4403 [12.29%] 6590 [15.03%]
(0.3, 16, 1, 100) 44 [67.63%] 0 [100.0%] 2130 [−26.12%] 4673 [21.56%] 6846 [28.11%]
(0.3, 16, 2, 50) 118 [47.12%] 131 [84.24%] 3741 [−16.89%] 4681 [7.84%] 8671 [7.09%]
(0.3, 16, 2, 100) 138 [51.49%] 0 [99.94%] 3853 [−18.79%] 4801 [21.4%] 8792 [11.67%]

Av. 𝜋 = 0.3 100 [61.08%] 37 [95.31%] 2059 [−28.3%] 3139 [15.58%] 5336 [24.09%]

(0.5, 5, 1, 50) 16 [69.82%] 20 [97.16%] 834 [−45.52%] 2314 [11.44%] 3184 [19.36%]
(0.5, 5, 1, 100) 32 [62.04%] 0 [100.0%] 815 [−42.24%] 2377 [28.77%] 3224 [25.42%]
(0.5, 5, 2, 50) 47 [52.92%] 67 [86.53%] 1426 [−32.38%] 2435 [9.8%] 3975 [9.17%]
(0.5, 5, 2, 100) 48 [53.91%] 1 [99.81%] 1467 [−32.3%] 2542 [23.2%] 4058 [18.77%]

(0.5, 16, 1, 50) 9 [71.73%] 40 [94.56%] 2098 [−28.9%] 6981 [6.67%] 9128 [7.61%]
(0.5, 16, 1, 100) 12 [70.85%] 0 [100.0%] 2129 [−28.97%] 6954 [15.06%] 9095 [9.23%]
(0.5, 16, 2, 50) 32 [47.21%] 177 [79.3%] 3780 [−18.87%] 7269 [3.1%] 11 257 [2.91%]
(0.5, 16, 2, 100) 31 [49.76%] 0 [99.9%] 3881 [−19.88%] 7223 [12.35%] 11 135 [5.09%]

(continued on next page)
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Table B.3 (continued).
(𝜋𝑜𝑛 , 𝜆, ℎ, 𝑝𝑜) Cost break-up Total cost

Off pen On pen Holding Fulfillment

Av. 𝜋 = 0.5 28 [59.78%] 38 [94.66%] 2054 [−31.13%] 4762 [13.8%] 6882 [12.19%]

(0.7, 5, 1, 50) 5 [69.12%] 36 [91.73%] 795 [−43.8%] 3119 [8.12%] 3955 [10.05%]
(0.7, 5, 1, 100) 9 [68.84%] 0 [100.0%] 856 [−50.51%] 3101 [17.79%] 3966 [10.52%]
(0.7, 5, 2, 50) 22 [52.63%] 62 [86.1%] 1408 [−32.13%] 3208 [5.74%] 4700 [5.26%]
(0.7, 5, 2, 100) 19 [52.06%] 1 [99.15%] 1428 [−30.45%] 3302 [14.75%] 4750 [7.31%]

(0.7, 16, 1, 50) 2 [76.03%] 88 [88.56%] 2128 [−31.14%] 9591 [4.27%] 11 808 [4.89%]
(0.7, 16, 1, 100) 2 [65.0%] 0 [100.0%] 2155 [−30.21%] 9619 [9.89%] 11 776 [5.38%]
(0.7, 16, 2, 50) 5 [58.19%] 129 [84.29%] 3856 [−21.18%] 9733 [3.16%] 13 722 [2.42%]
(0.7, 16, 2, 100) 7 [48.89%] 1 [99.61%] 3912 [−21.01%] 9912 [8.56%] 13 831 [3.39%]

Av. 𝜋 = 0.7 9 [61.34%] 39 [93.68%] 2067 [−32.55%] 6448 [9.04%] 8563 [6.16%]

(1.0, 5, 1, 50) 0 [**%] 27 [93.74%] 800 [−44.61%] 4344 [4.34%] 5171 [6.42%]
(1.0, 5, 1, 100) 0 [**%] 0 [100.0%] 845 [−48.33%] 4328 [12.71%] 5173 [7.71%]
(1.0, 5, 2, 50) 0 [**%] 93 [81.58%] 1392 [−31.26%] 4446 [3.26%] 5931 [3.76%]
(1.0, 5, 2, 100) 0 [**%] 1 [99.23%] 1445 [−31.5%] 4498 [10.51%] 5944 [4.38%]

(1.0, 16, 1, 50) 0 [**%] 74 [90.23%] 2121 [−30.8%] 13 532 [3.04%] 15 727 [3.73%]
(1.0, 16, 1, 100) 0 [**%] 0 [100.0%] 2149 [−29.84%] 13 576 [6.98%] 15 725 [3.83%]
(1.0, 16, 2, 50) 0 [**%] 216 [75.49%] 3775 [−19.02%] 13 784 [1.59%] 17 775 [1.58%]
(1.0, 16, 2, 100) 0 [**%] 4 [97.96%] 3872 [−19.74%] 13 828 [6.37%] 17 704 [2.69%]

Av. 𝜋 = 1.0 0 [**%] 52 [92.28%] 2050 [−31.89%] 9042 [6.1%] 11 144 [4.26%]

Av. 𝑇 = 3 34 [60.73%] 42 [93.98%] 2057 [−30.97%] 5848 [11.13%] 7981 [11.68%]
Table B.4
Results of OC for clustering for 𝑁 = 30, 𝛤𝑂𝐶 = 3% and 𝑇 = 7. The percentage decrease with respect to GSU2021 is shown in the
brackets.
(𝜋𝑜𝑛 , 𝜆, ℎ, 𝑝𝑜) Cost break-up Total cost

Off pen On pen Holding Fulfillment

(0.3, 5, 1, 50) 198 [40.05%] 315 [75.43%] 3939 [−13.49%] 3679 [5.67%] 8131 [9.49%]
(0.3, 5, 1, 100) 208 [47.07%] 59 [97.4%] 4052 [−14.47%] 4324 [17.55%] 8643 [24.46%]
(0.3, 5, 2, 50) 390 [18.91%] 482 [49.04%] 7163 [−6.76%] 3930 [1.92%] 11 966 [1.47%]
(0.3, 5, 2, 100) 485 [30.04%] 73 [92.87%] 7548 [−9.91%] 4419 [13.24%] 12 525 [8.41%]

(0.3, 16, 1, 50) 121 [46.05%] 374 [77.66%] 11 498 [−8.73%] 10 482 [4.81%] 22 475 [4.3%]
(0.3, 16, 1, 100) 139 [42.16%] 38 [97.54%] 11 653 [−8.72%] 11 306 [11.6%] 23 135 [8.47%]
(0.3, 16, 2, 50) 374 [5.85%] 1015 [37.41%] 21 500 [−3.28%] 11 203 [−1.06%] 34 091 [−0.5%]
(0.3, 16, 2, 100) 358 [18.95%] 46 [93.16%] 22 288 [−5.65%] 11 842 [7.21%] 34 534 [1.26%]

Av. 𝜋 = 0.3 284 [31.13%] 300 [77.56%] 11 205 [−8.88%] 7648 [7.62%] 19 437 [7.17%]

(0.5, 5, 1, 50) 59 [38.12%] 304 [72.29%] 3857 [−12.45%] 5613 [2.87%] 9833 [5.45%]
(0.5, 5, 1, 100) 75 [39.68%] 9 [98.26%] 4005 [−14.73%] 5858 [14.79%] 9946 [9.45%]
(0.5, 5, 2, 50) 191 [−4.12%] 766 [20.77%] 6877 [−3.13%] 5941 [−1.88%] 13 776 [−0.91%]
(0.5, 5, 2, 100) 144 [20.95%] 126 [80.87%] 7287 [−6.65%] 6474 [5.68%] 14 032 [3.47%]

(0.5, 16, 1, 50) 31 [49.11%] 329 [76.11%] 11 663 [−10.56%] 16 427 [2.75%] 28 451 [1.49%]
(0.5, 16, 1, 100) 43 [37.01%] 34 [88.35%] 11 592 [−8.42%] 16 978 [6.54%] 28 647 [1.95%]
(0.5, 16, 2, 50) 125 [−1.84%] 874 [47.12%] 21 655 [−4.2%] 17 424 [−2.57%] 40 078 [−1.34%]
(0.5, 16, 2, 100) 112 [10.38%] 71 [88.89%] 22 145 [−5.13%] 17 812 [3.48%] 40 140 [0.36%]

Av. 𝜋 = 0.5 98 [23.66%] 314 [71.58%] 11 135 [−8.16%] 11 566 [3.96%] 23 113 [2.49%]

(0.7, 5, 1, 50) 22 [38.31%] 225 [71.7%] 3950 [−15.94%] 7389 [3.34%] 11 586 [2.48%]
(0.7, 5, 1, 100) 30 [44.69%] 2 [98.87%] 4092 [−17.41%] 7418 [11.38%] 11 542 [4.51%]
(0.7, 5, 2, 50) 87 [8.82%] 639 [29.68%] 6996 [−5.28%] 7649 [0.06%] 15 370 [−0.45%]
(0.7, 5, 2, 100) 58 [22.49%] 36 [90.22%] 7371 [−8.55%] 8074 [5.59%] 15 538 [1.55%]

(0.7, 16, 1, 50) 12 [35.38%] 512 [63.89%] 11 417 [−8.25%] 22 616 [1.23%] 34 556 [0.93%]
(0.7, 16, 1, 100) 8 [44.37%] 0 [99.95%] 11 826 [−10.71%] 22 795 [5.59%] 34 629 [1.64%]
(0.7, 16, 2, 50) 49 [−21.02%] 1147 [33.2%] 21 582 [−3.86%] 23 521 [−2.34%] 46 299 [−1.71%]
(0.7, 16, 2, 100) 45 [−14.62%] 230 [64.61%] 21 767 [−3.35%] 24 264 [0.55%] 46 306 [−0.34%]

Av. 𝜋 = 0.7 39 [19.8%] 349 [69.01%] 11 125 [−9.17%] 15 466 [3.17%] 26 978 [1.08%]

(1.0, 5, 1, 50) 0 [**%] 156 [81.67%] 3980 [−17.08%] 10 166 [1.83%] 14 302 [2.09%]
(1.0, 5, 1, 100) 0 [**%] 0 [99.95%] 4021 [−15.41%] 10 264 [7.04%] 14 285 [3.01%]
(1.0, 5, 2, 50) 0 [**%] 573 [41.66%] 7073 [−6.48%] 10 502 [−1.03%] 18 148 [−0.71%]
(1.0, 5, 2, 100) 0 [**%] 44 [87.82%] 7327 [−7.73%] 10 834 [3.26%] 18 205 [0.86%]

(1.0, 16, 1, 50) 0 [**%] 448 [70.42%] 11 503 [−9.24%] 31 896 [0.23%] 43 847 [0.38%]
(1.0, 16, 1, 100) 0 [**%] 3 [99.16%] 11 673 [−9.34%] 32 120 [3.32%] 43 797 [1.04%]
(1.0, 16, 2, 50) 0 [**%] 1501 [14.96%] 21 365 [−2.85%] 32 257 [−0.54%] 55 123 [−0.92%]
(1.0, 16, 2, 100) 0 [**%] 134 [76.93%] 21 829 [−3.54%] 33 734 [−0.57%] 55 698 [−0.89%]

Av. 𝜋 = 1.0 0 [**%] 358 [71.57%] 11 096 [−8.96%] 21 472 [1.69%] 32 926 [0.61%]

Av. 𝑇 = 7 105 [24.87%] 330 [72.43%] 11 140 [−8.79%] 14 038 [4.11%] 25 614 [2.84%]
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