63 research outputs found

    Enhanced mechanical and corrosion protection properties of pulse electrodeposited NiP-ZrO2 nanocomposite coatings

    Get PDF
    Pulse electrodeposition is a technique of particular interest, which offers promising advantages such as ease of processing, compositional control, uniformity in structure, and grain refinement. In the present study, NiP-ZrO2 nanocomposite coatings containing various concentrations of ZrO2 nanoparticles (ZONPs) were deposited on low alloy steel (30CrMnSi) through pulse electrodeposition technique. The ZONPs in concentration of 0.0, 0.25, 0.50, 0.75, and 1.0 g/L were added in the electrolyte bath to obtain NiP-ZrO2 nanocomposite coatings. Furthermore, to elucidate the role of ZONPs in the NiP matrix, the structural, morphological, mechanical, and electrochemical properties of NiP-ZrO2 nanocomposite coatings were studied thoroughly. FESEM and EDX results reveal the successful incorporation of ZONPs into the NiP matrix. XRD and XPS analysis confirm the formation of a pure phase NiP structure without any noticeable defects. A considerable improvement in the mechanical response was observed with an increasing amount of ZONPs, reaching to highest values (hardness 6.7 GPa, modulus of elasticity 21.72 GPa) for NiP-1.0 ZrO2 coating composition. Similarly, the electrochemical results show a gradual increase in corrosion protection behavior of the NiP-ZrO2 coatings with increasing ZONP concentration, reaching an eventual value ~5.8 kΩ cm−2 at NiP-1.0 ZrO2 coating composition, which is six times greater than the pure NiP coatings. These improvements in the mechanical and electrochemical response of NiP-ZrO2 nanocomposite coatings highlight their suitability for applications such as oil and gas pipelines

    Electrochemical and thermodynamic study on the corrosion performance of API X120 steel in 3.5% NaCl solution

    Get PDF
    The present work studied the effect of temperature on the corrosion behavior of API X120 steel in a saline solution saturated with CO2 in absence and presence of polyethyleneimine (PEI) as an environmentally safe green inhibitor. The effect of PEI on the corrosion behavior of API X120 steel was investigated using destructive and non-destructive electrochemical techniques. The overall results revealed that PEI significantly decreases the corrosion rate of API X120 steel with inhibition efficiency of 94% at a concentration of 100 μmol L−1. The adsorption isotherm, activation energy and the thermodynamic parameters were deduced from the electrochemical results. It is revealed that the adsorption of PEI on API X120 steel surface follows Langmuir adsorption isotherm adopting a Physi-chemisorption mechanism. Finally, the samples were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques to elucidate the effect of aggressiveness of corrosive media on the surface morphology and the corrosion performance of API X120 steel. The surface topography result indicates that the API X120 steel interface in PEI presence is smoother than CO2 with Cl− ions or Cl− ions only. This is attributed to the compact protective film limits the aggressive ions transfer towards the metallic surface and reduces the corrosion rate. Moreover, PEI inhibition mechanism is based on its CO2 capturing ability and the PEI adsorption on the steel surface beside the siderite layer which give the PEI molecules the ability to reduce the scale formation and increase the corrosion protection due to capturing the CO2 from the brine solution

    Corrosion and heat treatment study of electroless nip-ti nanocomposite coatings deposited on hsla steel

    Get PDF
    Corrosion and heat treatment studies are essential to predict the performance and sustainability of the coatings in harsh environments, such as the oil and gas industries. In this study, nickel phosphorus (NiP)–titanium (Ti) nanocomposite coatings (NiP-Ti nanoparticles (TNPs)), containing various concentrations of Ti nanoparticles (TNPs) were deposited on high strength low alloy (HSLA) steel through electroless deposition processing. The concentrations of 0.25, 0.50 and 1.0 g/L TNPs were dispersed in the electroless bath, to obtain NiP-TNPs nanocomposite coatings comprising different Ti contents. Further, the effect of TNPs on the structural, mechanical, corrosion, and heat treatment performance of NiP coatings was thoroughly studied to illustrate the role of TNPs into the NiP matrix. Field emission scanning electron microscope (FESEM) and energy dispersive spectroscopy (EDX) results confirm the successful incorporation of TNPs into the NiP matrix. A substantial improvement in the mechanical response of the NiP matrix was noticed with an increasing amount of TNPs, which reached to its ultimate values (hardness 675 Hv, modulus of elasticity 18.26 GPa, and stffness 9.02 kN/m) at NiP-0.5TNPs coatings composition. Likewise, the electrochemical impedance spectroscopy measurements confirmed a tremendous increase in the corrosion inhibition efficiency of the NiP coatings with an increasing amount of TNPs, reaching ~96.4% at a composition of NiP-0.5TNPs. In addition, the NiP-TNPs nanocomposite coatings also unveiled better performance after heat treatment than NiP coatings, due to the presence of TNPs into the NiP matrix and the formation of more stable (heat resistant) phases, such as Ni3P, Ni3Ti, NiO, etc., during the subsequent processing.This publication was made possible by Qatar University Research Grant-IRCC-2020-006. The findings achieved herein are solely the responsibility of the authors

    Multifunctional self-healing polymeric nanocomposite coatings for corrosion inhibition of steel

    Get PDF
    The present work focuses on the self-healing and corrosion behavior of novel epoxy based coatings containing epoxy monomer (EM) and dodecylamine (DDA) as self-healing and corrosion inhibitor, respectively. The coating self-healing ability and the corrosion inhibition effect have been combined, together, in one single coated layer providing autonomous corrosion protection. Towards this goal, the as-synthesized titania nanotubes (TNTs), with an average size of 20 nm were impregnated with DDA and EM and were thoroughly dispersed into the epoxy used as the matrix and applied on steel. Fourier-transform infrared spectroscopy (FTIR) analysis confirms the presence of DDA loaded nanotubes and the loading of inhibitor was estimated by thermogravimetric analysis. . Additionally, the amount of the released corrosion inhibitor was identified by gas chromatography-mass spectrometry (GC-MS). The scanning electron microscopy (SEM), analysis shows the polymer healing of the prepared coatings when damaged. The electrochemical studies indicate that the corrosion rate of the steel samples coated with the epoxy modified with the healing additives decreases after 5 days of immersion in saline water

    Appendiceal Diverticulitis in a Young Female Diagnosed on Pathology after Laparoscopic Appendectomy for Acute Appendicitis

    No full text
    Background. Appendiceal diverticulitis is a rare cause of inflammation of the appendix, which may mimic acute appendicitis. Its diagnosis is often delayed, and its occurrence carries an increased risk of significant complications, such as perforation. Case Presentation. A 23-year-old woman presented with sudden onset, severe, right lower quadrant abdominal pain and nausea. Her WBC was elevated, and abdominal CT showed findings indicative of acute appendicitis with a 13 mm fluid-filled appendix and local stranding. During laparoscopic appendectomy, significant inflammation was found around the appendix with some mucous material around the tip. The appendix base was not involved, and an endoloop was used to secure the stump. No other intra-abdominal abnormalities were observed. The patient recovered uneventfully. Pathology showed no classic appendicitis but appendiceal diverticulitis with signs of perforation. Discussion. Appendiceal diverticulitis is a rare condition which cannot be distinguished from acute appendicits clinically and on imaging. Diagnosis may be established based on pathology such as in our case. Appendectomy is indicated in appendiceal diverticulitis, and an appendix diverticulum is incidentally found during surgery or other investigations. This is due to the increased risk of perforation and the reported development of malignant tumors, including the appendix carcinoid

    Longitudinal Gastrectomy for Nonbariatric Indications

    No full text
    Background. Sleeve gastrectomy is the most commonly performed bariatric procedure. Laparoscopic longitudinal gastrectomy (LLG) may be indicated for other indications. Patients and Methods. Two men and two women aged 67, 72, 77, and 80 years underwent LLG for nonbariatric indications with two having normal weight, one being cachectic, and one severely obese. Results. LLG was discussed with patients prior to surgery, but decision for LLG was made during surgery after contemplating other surgical options. A wide sleeve over a 42 French bougie was created with the staple line being oversewn with running 3–0 silk. Indications included a bleeding Dieulafoy lesion that failed endoscopic clipping, fundus gland polyposis found during paraesophageal hernia repair, fundus nodules suspected to be leiomyosarcoma metastases revealing splenosis on final pathology, and significant gastric dilatation associated with organoaxial gastric volvulus. Three patients had an uneventful recovery; the severely obese patient temporarily lost weight but died after two years from a stroke. The last patient developed dysphagia due to an alpha-loop in the sleeve, which was managed by endoscopic stenting. The device subsequently migrated and was laparoscopically removed, with a side-side gastrogastrostomy performed to straighten the alpha-loop. The patient tolerated food better and with overnight PEG tube feeds gained weight but continued heavy smoking. He died after one year from COPD exacerbation. Conclusion. LLG seems to be an appropriate intervention for various gastric pathologies. Training of residents and fellows in the minimally invasive surgical steps of LLG is encouraged

    Synthesis, Identification, Computer-Aided Docking Studies, and ADMET Prediction of Novel Benzimidazo-1,2,3-triazole Based Molecules as Potential Antimicrobial Agents

    No full text
    2-azido-1H-benzo[d]imidazole derivatives 1a,b were reacted with a β-ketoester such as acetylacetone in the presence of sodium ethoxide to obtain the desired molecules 2a,b. The latter acted as a key molecule for the synthesis of new carbazone derivatives 4a,b that were submitted to react with 2-oxo-N-phenyl-2-(phenylamino)acetohydrazonoyl chloride to obtain the target thiadiazole derivatives 6a,b. The structures of the newly synthesized compounds were inferred from correct spectral and microanalytical data. Moreover, the newly prepared compounds were subjected to molecular docking studies with DNA gyrase B and exhibited binding energy that extended from −9.8 to −6.4 kcal/mol, which confirmed their excellent potency. The compounds 6a,b were found to be with the minimum binding energy (−9.7 and −9.8 kcal/mol) as compared to the standard drug ciprofloxacin (−7.4 kcal/mol) against the target enzyme DNA gyrase B. In addition, the newly synthesized compounds were also examined and screened for their in vitro antimicrobial activity against pathogenic microorganisms Staphylococcus aureus, E. coli, Pseudomonas aeruginosa, Aspergillus niger, and Candida albicans. Among the newly synthesized molecules, significant antimicrobial activity against all the tested microorganisms was obtained for the compounds 6a,b. The in silico and in vitro findings showed that compounds 6a,b were the most active against bacterial strains, and could serve as potential antimicrobial agents
    corecore