10 research outputs found

    Eco-Friendly Synthesis, Biological Evaluation, and In Silico Molecular Docking Approach of Some New Quinoline Derivatives as Potential Antioxidant and Antibacterial Agents

    Get PDF
    A new series of quinoline derivatives 5–12 were efficiently synthesized via one-pot multicomponent reaction (MCR) of resorcinol, aromatic aldehydes, β-ketoesters, and aliphatic/aromatic amines under solvent-free conditions. All products were obtained in excellent yields, pure at low-cost processing, and short time. The structures of all compounds were characterized by means of spectral and elemental analyses. In addition, all the synthesized compounds 5–12 were in vitro screened for their antioxidant and antibacterial activity. Moreover, in silico molecular docking studies of the new quinoline derivatives with the target enzymes, human NAD (P)H dehydrogenase (quinone 1) and DNA gyrase, were achieved to endorse their binding affinities and to understand ligand–enzyme possible intermolecular interactions. Compound 9 displayed promising antioxidant and antibacterial activity, as well as it was found to have the highest negative binding energy of -9.1 and -9.3 kcal/mol for human NAD (P)H dehydrogenase (quinone 1) and DNA gyrase, respectively. Further, it complied with the Lipinski’s rule of five, Veber, and Ghose. Therefore, the quinoline analogue 9 could be promising chemical scaffold for the development of future drug candidates as antioxidant and antibacterial agents

    Antimicrobial Potency and <i>E. coli</i> β-Carbonic Anhydrase Inhibition Efficacy of Phenazone-Based Molecules

    No full text
    In this investigation, 4-antipyrinecarboxaldhyde was reacted with methyl hydrazinecarbodithioate to afford the carbodithioate derivative 3. The as-prepared carbodithioate derivative 3 is considered to be a key molecule for the preparation of new antipyrine-1,3,4-thiadiazole-based molecules (4–9) through its reaction with the appropriate hydrazonoyl halides. Furthermore, a typical Biginelli three-component cyclocondensation reaction involving ethyl acetoacetate, 4-antipyrinecarboxaldhyde, and thiourea under the standard conditions is carried out in the presence of sulfuric acid to afford the corresponding antipyrine–pyrimidine hybrid molecule (10). The latter was submitted to react with hydrazine monohydrate to provide the corresponding hydrazide derivative (11) which, under reaction with ethyl acetoacetate in refluxing ethanol containing catalytic amount of acetic acid, afforded the corresponding derivative (12). The structure of the newly synthesized compounds was affirmed by their spectral and microanalytical data. We also screened for their antimicrobial potential (ZOI and MIC) and conducted a kinetic study. Additionally, the mechanism of biological action was assessed by a membrane leakage assay and SEM imaging technique. Moreover, the biological activities and the binding modes of these compounds were further supplemented by an in silico docking study against E. coli β-carbonic anhydrase. The amount of cellular protein released by E. coli is directly correlated to the concentration of compound 9, which was found to be 177.99 µg/mL following treatment with 1.0 mg/mL of compound 9. This finding supports compound 9’s antibacterial properties and explains how the formation of holes in the E. coli cell membrane results in the release of proteins from the cytoplasm. The newly synthesized compounds represent acceptable antimicrobial activities with potential action against E. coli β-carbonic anhydrase. The docking studies and antimicrobial activity test proved that compound (9) declared a greater activity than the other synthesized compounds

    Novel 3-phenylquinazolin-2,4(1H,3H)-diones as dual VEGFR-2/c-Met-TK inhibitors: design, synthesis, and biological evaluation

    No full text
    Abstract Multitarget anticancer drugs are more superior than single target drugs regarding patient compliance, drug adverse effects, drug-drug interactions, drug resistance as well as pharmaceutical industry economics. Dysregulation of both VEGFR-2 and c-Met tyrosine kinases (TKs) could result in development and progression of different human cancers. Herein, we reported a novel series of 3-phenylquinazolin-2,4(1H,3H)-diones with thiourea moiety as dual VEGFR-2/c-Met TKs. Compared to sorafenib, cabozantinib went behind VEGFR-2 inhibition to target c-Met TK. The dual VEGFR-2/c-Met inhibitory activity of cabozantinib is due to a longer HB domain than that of sorafenib. Based on pharmacophore of cabozantinib analogues, we designed new dual VEGFR-2/c-Met TKs. We synthesized the target compounds via a new single pot three-component reaction. The cytotoxic activity of synthesized compounds was conducted against HCT-116 colorectal cancer cell line. Compounds 3c and 3e exhibited the highest cytotoxic activity against HCT-116 cell line (IC50 1.184 and 3.403 µM, respectively). The in vitro enzyme inhibitory activity was carried out against both VEGFR-2 and c-Met TKs. Compound 3e has the highest inhibitory activity against both VEGFR-2/c-Met (IC50 = 83 and 48 nM, respectively). Docking studies showed that α-oxo moiety in quinazoline ring formed hydrogen bond HB with Met1160 residue in the adenine region of c-Met TK

    Synthesis, Identification, Computer-Aided Docking Studies, and ADMET Prediction of Novel Benzimidazo-1,2,3-triazole Based Molecules as Potential Antimicrobial Agents

    No full text
    2-azido-1H-benzo[d]imidazole derivatives 1a,b were reacted with a &beta;-ketoester such as acetylacetone in the presence of sodium ethoxide to obtain the desired molecules 2a,b. The latter acted as a key molecule for the synthesis of new carbazone derivatives 4a,b that were submitted to react with 2-oxo-N-phenyl-2-(phenylamino)acetohydrazonoyl chloride to obtain the target thiadiazole derivatives 6a,b. The structures of the newly synthesized compounds were inferred from correct spectral and microanalytical data. Moreover, the newly prepared compounds were subjected to molecular docking studies with DNA gyrase B and exhibited binding energy that extended from &minus;9.8 to &minus;6.4 kcal/mol, which confirmed their excellent potency. The compounds 6a,b were found to be with the minimum binding energy (&minus;9.7 and &minus;9.8 kcal/mol) as compared to the standard drug ciprofloxacin (&minus;7.4 kcal/mol) against the target enzyme DNA gyrase B. In addition, the newly synthesized compounds were also examined and screened for their in vitro antimicrobial activity against pathogenic microorganisms Staphylococcus aureus, E. coli,&nbsp;Pseudomonas aeruginosa, Aspergillus niger, and Candida albicans. Among the newly synthesized molecules, significant antimicrobial activity against all the tested microorganisms was obtained for the compounds 6a,b. The in silico and in vitro findings showed that compounds 6a,b were the most active against bacterial strains, and could serve as potential antimicrobial agents

    Design and biological evaluation of 3-substituted quinazoline-2,4(1H,3H)-dione derivatives as dual c-Met/VEGFR-2-TK inhibitors

    No full text
    AbstractThe dual c-Met/vascular endothelial growth factor receptor 2 (VEGFR-2) TK inhibition is a good strategy to overcome therapeutic resistance to small molecules VEGFR-2 inhibitors. In this study, we designed 3-substituted quinazoline-2,4(1H,3H)-dione derivatives as dual c-Met/VEGFR-2 TK inhibitors. We introduced new synthetic methods for reported derivatives of 3-substituted quinazoline-2,4(1H,3H)-dione 2a–g, in addition to the preparation of some new derivatives namely, 3 and 4a–j. Three compounds namely, 2c, 4b, and 4e showed substantial amount of inhibition for both c-Met and VEGFR-2 TK (IC50 range 0.052–0.084 µM). Both compounds 4b, 4e showed HB with highly conserved residue Asp1222 in the HB region of c-Met TK. For VEGFR-2 TK, compound 4b showed HB with a highly conserved residue Asp1046 in the HB region. Compound 4e showed HB with Glu885 and Asp1046. Moreover, in silico prediction of pharmacokinetic and physicochemical parameters of target compounds was carried out using SwissADME website. The quinazoline-2,4(1H,3H)-dione derivatives are promising antiproliferative candidates that require further optimisation.HighlightsNew 3-substituted quinazoline-2,4(1H,3H)-dione derivatives were synthesised and characterised.Compounds 4b and 4e showed higher cytotoxic activity than cabozantinib against HCT-116 colorectal cell lines.Both compounds 4b and 4e showed less toxicity to WI38 normal cell line compared to HCT 116 colon cancer cell line.Compound 4b was superior to cabozantinib in VEGFR-2 inhibition while compound 2c was equipotent to cabozantinib.Compounds 4b and 4e showed remarkable c-Met inhibitory activity.Compounds 4b and 4e arrested cell cycle and induced significant levels of apoptosis.In silico ADME prediction revealed high oral bioavailability and enhanced water solubility of target compounds as compared to cabozantinib.Target compounds interacted with both c-Met and VEGFR-2 active site in similar way to cabozantinib

    Synthesis, Molecular Docking Screening and Anti-Proliferative Potency Evaluation of Some New Imidazo[2,1-b]Thiazole Linked Thiadiazole Conjugates

    No full text
    Background: Imidazo[2,1-b]thiazole scaffolds were reported to possess various pharmaceutical activities. Results: The novel compound named methyl-2-(1-(3-methyl-6-(p-tolyl)imidazo[2,1-b]thiazol-2-yl)ethylidene)hydrazine-1-carbodithioate 3 acted as a predecessor molecule for the synthesis of new thiadiazole derivatives incorporating imidazo[2,1-b]thiazole moiety. The reaction of 3 with the appropriate hydrazonoyl halide derivatives 4a&ndash;j and 7&ndash;9 had produced the respective 1,3,4-thiadiazole derivatives 6a&ndash;j and 10&ndash;12. The chemical composition of all the newly synthesized derivatives were confirmed by their microanalytical and spectral data (FT-IR, mass spectrometry, 1H-NMR and 13C-NMR). All the produced novel compounds were screened for their anti-proliferative efficacy on hepatic cancer cell lines (HepG2). In addition, a computational molecular docking study was carried out to determine the ability of the synthesized thiadiazole molecules to interact with active site of the target Glypican-3 protein (GPC-3). Moreover, the physiochemical properties of the synthesized compounds were derived to determine the viability of the compounds as drug candidates for hepatic cancer. Conclusion: All the tested compounds had exhibited good anti-proliferative efficacy against hepatic cancer cell lines. In addition, the molecular docking results showed strong binding interactions of the synthesized compounds with the target GPC-3 protein with lower energy scores. Thus, such novel compounds may act as promising candidates as drugs against hepatocellular carcinoma

    Two Novel Regioisomeric Series of Bis-pyrazolines: Synthesis, <i>In Silico</i> Study, DFT Calculations, and Comparative Antibacterial Potency Profile against Drug-Resistant Bacteria; MSSA, MRSA, and VRSA

    No full text
    Aims: Design and synthesis of antimicrobial prototypes that are capable of eradicating bacterial biofilm formation that is responsible for many health challenges particularly with antibiotic-resistant bacterial species. Materials and Methods: The utility of 1,3-diarylenones, aka chalcones, 3a–i and 8a–j as building blocks to construct the corresponding bis-pyrazoline derivatives 5aa-bh and 9ad-bj. Screening the antibacterial behavior of the novel bis-pyrazoline derivatives against methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), and vancomycin-resistant S. aureus (VRSA) bacterial strains was investigated. Results: Chalcones were used as building scaffolds to construct two series of di- and trisubstituted bis-pyrazoline derivatives. Numerous novel bis-compounds displayed decent bacterial biofilm suppression. Conclusions: Two regioisomeric series of bis-chalcones were designed and constructed, and their structural diversity was manipulated to access the intrinsically bioactive, pyrazoline ring. The newly synthesized bis-pyrazoline derivatives presented decent antibacterial behavior against multiple drug-resistant bacterial strands (MSSA, MRSA, and VRSA)

    New 1,3-diphenyl-1H-pyrazol-5-ols as anti-methicillin resistant Staphylococcus aureus agents: Synthesis, antimicrobial evaluation and in silico studies

    No full text
    In the present work, two hybrid series of pyrazole-clubbed pyrimidine and pyrazole-clubbed thiazole compounds 3–21 from 4-acetyl-1,3-diphenyl-1H-pyrazole-5(4H)-ole 1 were synthesized as novel antimicrobial agents. Their chemical structures were thoroughly elucidated in terms of spectral analyses such as IR, 1H NMR, 13C NMR and mass spectra. The compounds were in vitro evaluated for their antimicrobial efficiency against various standard pathogen strains, gram -ive bacteria (Pseudomonas aeruginosa, Klebsiella pneumonia), gram + ive bacteria (MRSA, Bacillus subtilis), and Unicellular fungi (Candida albicans) microorganisms. The ZOI results exhibited that most of the tested molecules exhibited inhibition potency from moderate to high. Where compounds 7, 8, 12, 13 and 19 represented the highest inhibition potency against most of the tested pathogenic microbes comparing with the standard drugs. In addition, the MIC results showed that the most potent molecules 7, 8, 12, 13 and 19 showed inhibition effect against most of the tested microbes at low concentration. Moreover, the docking approach of the newly synthesized compounds against DNA gyrase enzyme was performed to go deeper into their molecular mechanism of antimicrobial efficacy. Further, computational investigations to calculate the pharmacokinetics parameters of the compounds were performed. Among them 7, 8, 12, 13 and 19 are the most potent compounds revealed the highest inhibition efficacy against most of the tested pathogenic microbes comparing with the standard drugs
    corecore