10 research outputs found

    Human Placental Mesenchymal Stem Cells (pMSCs) Play a Role as Immune Suppressive Cells by Shifting Macrophage Differentiation from Inflammatory M1 to Anti-inflammatory M2 Macrophages

    Get PDF
    BACKGROUND: Mesenchymal stem cells (MSCs) have a therapeutic potential in tissue repair because of capacity for multipotent differentiation and their ability to modulate the immune response. In this study, we examined the ability of human placental MSCs (pMSCs) to modify the differentiation of human monocytes into macrophages and assessed the influence of pMSCs on important macrophage functions. METHODS: We used GM-CSF to stimulate the differentiation of monocytes into the M1 macrophage pathway and then co-cultured these cells with pMSCs in the early stages of macrophage differentiation. We then evaluated the effect on differentiation by microscopic examination and by quantification of molecules important in the differentiation and immune functions of macrophages using flow cytometry and ELISA. The mechanism by which pMSCs could mediate their effects on macrophage differentiation was also studied. RESULTS: The co-culture of pMSCs with monocytes stimulated to follow the inflammatory M1 macrophage differentiation pathway resulted in a shift to anti-inflammatory M2-like macrophage differentiation. This transition was characterized by morphological of changes typical of M2 macrophages, and by changes in cell surface marker expression including CD14, CD36, CD163, CD204, CD206, B7-H4 and CD11b, which are distinctive of M2 macrophages. Co-culture with pMSCs reduced the expression of the costimulatory molecules (CD40, CD80 and CD86) and increased the expression of co-inhibitory molecules (CD273, CD274 and B7-H4) as well as the surface expression of major histocompatibility complex (MHC-II) molecules. Furthermore, the secretion of IL-10 was increased while the secretion of IL-1β, IL-12 (p70) and MIP-1α was decreased; a profile typical of M2 macrophages. Finally, pMSCs induced the phagocytic activity and the phagocytosis of apoptotic cells associated with M2- like macrophages; again a profile typical of M2 macrophages. We found that the immunoregulatory effect of pMSCs on macrophage differentiation was mediated by soluble molecules acting partially via glucocorticoid and progesterone receptors. CONCLUSIONS: We have shown that pMSCs can transition macrophages from an inflammatory M1 into an anti-inflammatory M2 phenotype. Our findings suggest a new immunosuppressive property of pMSCs that may be employed in the resolution of inflammation associated with inflammatory diseases and in tissue repair

    Human chorionic villous mesenchymal stem/stromal cells protect endothelial cells from injury induced by high level of glucose

    Get PDF
    BACKGROUND: Mesenchymal stem/stromal cells derived from chorionic villi of human term placentae (pMSCs) protect human endothelial cells from injury induced by hydrogen peroxide (H2O2). In diabetes, elevated levels of glucose (hyperglycaemia) induce H2O2 production, which causes the endothelial dysfunction that underlies the enhanced immune responses and adverse complications associated with diabetes, which leads to thrombosis and atherosclerosis. In this study, we examined the ability of pMSCs to protect endothelial cell functions from the negative impact of high level of glucose. METHODS: pMSCs isolated from the chorionic villi of human term placentae were cultured with endothelial cells isolated from human umbilical cord veins in the presence of glucose. Endothelial cell functions were then determined. The effect of pMSCs on gene expression in glucose-treated endothelial cells was also determined. RESULTS: pMSCs reversed the effect of glucose on key endothelial cell functions including proliferation, migration, angiogenesis, and permeability. In addition, pMSCs altered the expression of many genes that mediate important endothelial cell functions including survival, apoptosis, adhesion, permeability, and angiogenesis. CONCLUSIONS: This is the first comprehensive study to provide evidence that pMSCs protect endothelial cells from glucose-induced damage. Therefore, pMSCs have potential therapeutic value as a stem cell-based therapy to repair glucose-induced vascular injury and prevent the adverse complications associated with diabetes and cardiovascular disease. However, further studies are necessary to reveal more detailed aspects of the mechanism of action of pMSCs on glucose-induced endothelial damage in vitro and in vivo

    Preconditioning by Hydrogen Peroxide Enhances Multiple Properties of Human Decidua Basalis Mesenchymal Stem/Multipotent Stromal Cells

    Get PDF
    Stem cell-based therapies rely on stem cell ability to repair in an oxidative stress environment. Preconditioning of mesenchymal stem cells (MSCs) to a stress environment has beneficial effects on their ability to repair injured tissues. We previously reported that MSCs from the decidua basalis (DBMSCs) of human placenta have many important cellular functions that make them potentially useful for cell-based therapies. Here, we studied the effect of DBMSC preconditioning to a stress environment. DBMSCs were exposed to various concentrations of hydrogen peroxide (H2O2), and their functions were then assessed. DBMSC expression of immune molecules after preconditioning was also determined. DBMSC preconditioning with H2O2 enhanced their proliferation, colonogenicity, adhesion, and migration. In addition, DBMSCs regardless of H2O2 treatment displayed antiangiogenic activity. H2O2 preconditioning also increased DBMSC expression of genes that promote cellular functions and decreased the expression of genes, which have opposite effect on their functions. Preconditioning also reduced DBMSC expression of IL-1β, but had no effects on the expression of other immune molecules that promote proliferation, adhesion, and migration. These data show that DBMSCs resist a toxic environment, which adds to their potential as a candidate stem cell type for treating various diseases in hostile environments

    Phenotypic and Functional Characterization of Mesenchymal Stem/Multipotent Stromal Cells from Decidua Basalis of Human Term Placenta

    Get PDF
    Mesenchymal stem cell (MSC) therapies for the treatment of diseases associated with inflammation and oxidative stress employ primarily bone marrow MSCs (BMMSCs) and other MSC types such as MSC from the chorionic villi of human term placentae (pMSCs). These MSCs are not derived from microenvironments associated with inflammation and oxidative stress, unlike MSCs from the decidua basalis of the human term placenta (DBMSCs). DBMSCs were isolated and then extensively characterized. Differentiation of DBMSCs into three mesenchymal lineages (adipocytes, osteocytes, and chondrocytes) was performed. Real-time polymerase chain reaction (PCR) and flow cytometry techniques were also used to characterize the gene and protein expression profiles of DBMSCs, respectively. In addition, sandwich enzyme-linked immunosorbent assay (ELISA) was performed to detect proteins secreted by DBMSCs. Finally, the migration and proliferation abilities of DBMSCs were also determined. DBMSCs were positive for MSC markers and HLA-ABC. DBMSCs were negative for hematopoietic and endothelial markers, costimulatory molecules, and HLA-DR. Functionally, DBMSCs differentiated into three mesenchymal lineages, proliferated, and migrated in response to a number of stimuli. Most importantly, these cells express and secrete a distinct combination of cytokines, growth factors, and immune molecules that reflect their unique microenvironment. Therefore, DBMSCs could be attractive, alternative candidates for MSC-based therapies that treat diseases associated with inflammation and oxidative stress
    corecore