4 research outputs found

    Measuring magnetic hysteresis curves with polarized soft X‐ray resonant reflectivity

    Get PDF
    Calculations and measurements of polarization‐dependent soft X‐ray scattering intensity are presented during a magnetic hysteresis cycle. It is confirmed that the dependence of the intensity on the magnetic moment can be linear, quadratic or a combination of both, depending on the polarization of the incident X‐ray beam and the direction of the magnetic moment. With a linearly polarized beam, the scattered intensity will have a purely quadratic dependence on the magnetic moment when the magnetic moment is parallel to the scattering plane. However, with the magnetic moment perpendicular to the scattering plane, there is also a linear component. This means that, when measuring the hysteresis with linear polarization during a hysteresis cycle, the intensity will be an even function of the applied field when the change in the magnetic moment (and field) is confined within the scattering plane but becomes more complicated when the magnetic moment is out of the scattering plane. Furthermore, with circular polarization, the dependence of the scattered intensity on the moment is a combination of linear and quadratic. With the moment parallel to the scattering plane, the linear component changes with the helicity of the incident beam. Surprisingly, in stark contrast to absorption studies, even when the magnetic moment is perpendicular to the scattering plane there is still a dependence on the moment with a linear component. This linear component is completely independent of the helicity of the beam, meaning that the hysteresis loops will not be inverted with helicity

    Growth and Characterisation Studies of Eu3O4 Thin Films Grown on Si/SiO2 and Graphene

    No full text
    We report the growth, structural and magnetic properties of the less studied Eu-oxide phase, Eu3O4, thin films grown on a Si/SiO2 substrate and Si/SiO2/graphene using molecular beam epitaxy. The X-ray diffraction scans show that highly textured crystalline Eu3O4(001) films are grown on both substrates, whereas the film deposited on graphene has a better crystallinity than that grown on the Si/SiO2 substrate. The SQUID measurements show that both films have a Curie temperature of ∼5.5±0.1 K, with a magnetic moment of ∼320 emu/cm3 at 2 K. The mixed valence of the Eu cations has been confirmed by the qualitative analysis of the depth-profile X-ray photoelectron spectroscopy measurements with the Eu2+:Eu3+ ratio of 28:72. However, surprisingly, our films show no metamagnetic behaviour as reported for the bulk and powder form. Furthermore, the microscopic optical images and Raman measurements show that the graphene underlayer remains largely intact after the growth of the Eu3O4 thin films

    Growth and Characterisation Studies of Eu<sub>3</sub>O<sub>4</sub> Thin Films Grown on Si/SiO<sub>2</sub> and Graphene.

    No full text
    We report the growth, structural and magnetic properties of the less studied Eu-oxide phase, Eu3O4, thin films grown on a Si/SiO2 substrate and Si/SiO2/graphene using molecular beam epitaxy. The X-ray diffraction scans show that highly textured crystalline Eu3O4(001) films are grown on both substrates, whereas the film deposited on graphene has a better crystallinity than that grown on the Si/SiO2 substrate. The SQUID measurements show that both films have a Curie temperature of ∼5.5±0.1 K, with a magnetic moment of ∼320 emu/cm3 at 2 K. The mixed valence of the Eu cations has been confirmed by the qualitative analysis of the depth-profile X-ray photoelectron spectroscopy measurements with the Eu2+:Eu3+ ratio of 28:72. However, surprisingly, our films show no metamagnetic behaviour as reported for the bulk and powder form. Furthermore, the microscopic optical images and Raman measurements show that the graphene underlayer remains largely intact after the growth of the Eu3O4 thin films

    Long spin diffusion lengths in doped conjugated polymers due to enhanced exchange coupling

    No full text
    Carbon-based semiconductors such as conjugated organic polymers are of potential use in the development of spintronic devices and spin-based information processing. In particular, these materials offer a low spin-orbit coupling strength due to their relatively light constituent chemical elements, which should, in principle, favour long spin diffusion lengths. However, organic polymers are relatively disordered materials and typically have a carrier mobility that is orders of magnitude lower than crystalline inorganic materials. As a result, small spin diffusion lengths of around 50 nm have typically been measured using vertical organic spin valves. Here, we report measuring spin diffusion lengths in doped conjugated polymers using a lateral spin transport device architecture, which is based on spin pumping injection and inverse spin Hall detection. The approach suggests that long spin diffusion lengths of more than 1 mu m and fast spin transit times of around 10 ns are possible in conjugated polymer systems when they have a sufficiently high spin density (around 10(20)cm(-3)). We explain these results in terms of an exchangebased spin diffusion regime in which the exchange interactions decouple spin and charge transport.N
    corecore