9 research outputs found

    Age-dependent loss of cohesion protection in human oocytes

    Get PDF
    Aneuploid human eggs (oocytes) are a major cause of infertility, miscarriage, and chromosomal disorders. Such aneuploidies increase greatly as women age, with defective linkages between sister chromatids (cohesion) in meiosis as a common cause. We found that loss of a specific pool of the cohesin protector protein, shugoshin 2 (SGO2), may contribute to this phenomenon. Our data indicate that SGO2 preserves sister chromatid cohesion in meiosis by protecting a ‘‘cohesin bridge’’ between sister chromatids. In human oocytes, SGO2 localizes to both sub-centromere cups and the pericentromeric bridge, which spans the sister chromatid junction. SGO2 normally colocalizes with cohesin; however, in meiosis II oocytes from older women, SGO2 is frequently lost from the pericentromeric bridge and sister chromatid cohesion is weakened. MPS1 and BUB1 kinase activities maintain SGO2 at sub-centromeres and the pericentromeric bridge. Removal of SGO2 throughout meiosis I by MPS1 inhibition reduces cohesion protection, increasing the incidence of single chromatids at meiosis II. Therefore, SGO2 deficiency in human oocytes can exacerbate the effects of maternal age by rendering residual cohesin at pericentromeres vulnerable to loss in anaphase I. Our data show that impaired SGO2 localization weakens cohesion integrity and may contribute to the increased incidence of aneuploidy observed in human oocytes with advanced maternal age

    Pyridoxine supplementation during oocyte maturation improves the development and quality of bovine preimplantation embryos

    Get PDF
    Recently, inhibition of cathepsin B (CTSB) activity during in vitro maturation (IVM) and culture (NC) improved the developmental competence and quality of bovine oocytes and embryos. E-64 is a widely used inhibitor to inhibit CTSB activity, however, E-64 inhibits not only CTSB activity but also the activities of other proteases including cathepsin L (CTSL), papain, calpain, and trypsin. Pyridoxine, the catalytically active form of vitamin B6, plays a crucial role in several cellular processes and has the ability to inhibit CTSB activity. However, whether pyridoxine has an improving effect during IVM of bovine oocytes is still unknown. In this study, we investigated the effect of pyridoxine supplementation during IVM on the developmental competence of bovine oocytes and the quality of the produced blastocysts. Supplementation of pyridoxine to the maturation medium significantly decreased the activity of CTSB in both bovine cumulus cells and oocytes. Moreover, pyridoxine improved both the blastocyst and hatched blastocyst rates. In addition, the presence of pyridoxine during IVM also significantly improved the quality of the produced embryos by increasing the total cell number as well as decreasing the CTSB mRNA expression and apoptotic rate. These results indicate that pyridoxine is a promising tool to improve the developmental competence of bovine oocytes and subsequent embryo quality

    Effect of autophagy induction and cathepsin B inhibition on developmental competence of poor quality bovine oocytes

    No full text
    The present study investigated the effect of autophagy induction and cathepsin B (CTSB) inhibition on developmental competence of poor quality oocytes. Bovine cumulus oocyte complexes (COCs) were classified as good or poor according to their morphology. Autophagy activity was detected in good and poor germinal vesicle (GV) oocytes. Then E-64, a CTSB inhibitor, rapamycin (Rapa), an autophagy inducer, and combined administration was achieved during in vitro maturation (IVM) of poor quality COCs followed by detection of autophagy activity. In the next experiment, E-64, Rapa, and E64 + Rapa, were added during IVM to good and poor quality COCs followed by in vitro fertilization and culture for 8 days to investigate whether inhibition of CTSB and/or induction of autophagy improve embryonic development and quality. Autophagy activity was significantly lower in poor quality GV oocytes than in good quality ones. E-64, Rapa and E-64 + Rapa treatment during IVM significantly increased autophagy activity in poor quality oocytes. Addition of Rapa in good quality COCs did not increase the blastocyst rate, whereas E-64 increased the blastocyst rate and total cell number (TCN) with decreasing TUNEL-positive cells. In contrast, Rapa treatment in poor quality COCs significantly increased the blastocyst rate and TCN with decreasing TUNEL-positive cells. These results indicate oocyte quality has different responses to intracellular autophagy induction and CTSB activity control by potential autophagy and catabolic status, however, synergetic effect of autophagy induction and CTSB inhibition can increase developmental competence of both good and poor quality COCs, especially rescue effect in poor quality COCs

    Dynamic status of lysosomal cathepsin in bovine oocytes and preimplantation embryos

    No full text
    Lysosomal cathepsin, in particular cathepsin B (CTSB), plays an important role in implantation, pregnancy, and embryonic development. However, little is known about the mechanism related to the dynamic status of lysosomal cathepsins in bovine oocytes and preimplantation embryos. In the present study, we investigated the dynamics of gene expression, activity, and immunolocalization of CTSB, as well as the activities of lysosome, in bovine oocytes and preimplantation embryos. After gene expression analysis of several cathepsin-related genes, transcript levels of CTSB, CTSD and CTSZ were highest in MII oocytes followed by a significant decrease from the 8-cell embryo stage. Activity of CTSB showed a significant increase in 1-cell and morula stage embryos. Lysosomal activity was also significant higher in 1-cell and morula stages, which was consistent with CTSB activities. However, immunolocalization of CTSB did not show the similar pattern of CTSB and lysosomal activities. We also found significantly higher expression levels of CTSB transcript in the trophectoderm (TE) compared to inner cell mass (ICM), whereas activity and immunolocalization of CTSB showed an opposite pattern, i.e. significantly higher in ICM than TE. These patterns were confirmed by the same analysis using separated ICM and TE. Our results suggest that lysosomal CTSB has a pivotal role during embryonic development and differentiation, especially fertilization and the differentiation period

    Effect of E-64 Supplementation during In Vitro Maturation on the Developmental Competence of Bovine OPU-Derived Oocytes

    No full text
    Recovery of bovine oocytes using the ovum pick-up (OPU) technique offers the advantage of rapid genetic improvement through propagation of desired genes from animals with high genetic qualities. However, the developmental competence of OPU-derived immature oocytes remains relatively poor. We previously found that cathepsin B gene expression and activity are increased in poor quality oocytes and embryos compared to good quality ones. In this study, we investigated the effect of E-64 (cathepsin B inhibitor) supplementation during in vitro maturation (IVM) on the developmental competence of OPU-derived immature oocytes and the quality of the produced blastocysts. Our results showed that supplementation of IVM medium with E-64 significantly improved the developmental competence of OPU-derived immature oocytes as evidenced by the significant increase of the blastocyst rate. Importantly, the presence of E-64 during IVM also significantly improved blastocyst quality by increasing the total cell number and decreasing the percentage of TUNEL positive cells. These results indicate that E-64 supplementation during IVM is a promising tool to improve the efficiency of OPU-IVF program by improving the developmental competence of OPU-derived immature oocytes
    corecore