13 research outputs found

    Quantifying Attention Flow in Transformers

    Full text link
    In the Transformer model, "self-attention" combines information from attended embeddings into the representation of the focal embedding in the next layer. Thus, across layers of the Transformer, information originating from different tokens gets increasingly mixed. This makes attention weights unreliable as explanations probes. In this paper, we consider the problem of quantifying this flow of information through self-attention. We propose two methods for approximating the attention to input tokens given attention weights, attention rollout and attention flow, as post hoc methods when we use attention weights as the relative relevance of the input tokens. We show that these methods give complementary views on the flow of information, and compared to raw attention, both yield higher correlations with importance scores of input tokens obtained using an ablation method and input gradients

    Experiential, Distributional and Dependency-based Word Embeddings have Complementary Roles in Decoding Brain Activity

    Get PDF
    We evaluate 8 different word embedding models on their usefulness for predicting the neural activation patterns associated with concrete nouns. The models we consider include an experiential model, based on crowd-sourced association data, several popular neural and distributional models, and a model that reflects the syntactic context of words (based on dependency parses). Our goal is to assess the cognitive plausibility of these various embedding models, and understand how we can further improve our methods for interpreting brain imaging data. We show that neural word embedding models exhibit superior performance on the tasks we consider, beating experiential word representation model. The syntactically informed model gives the overall best performance when predicting brain activation patterns from word embeddings; whereas the GloVe distributional method gives the overall best performance when predicting in the reverse direction (words vectors from brain images). Interestingly, however, the error patterns of these different models are markedly different. This may support the idea that the brain uses different systems for processing different kinds of words. Moreover, we suggest that taking the relative strengths of different embedding models into account will lead to better models of the brain activity associated with words.Comment: accepted at Cognitive Modeling and Computational Linguistics 201

    A Comparison of Architectures and Pretraining Methods for Contextualized Multilingual Word Embeddings

    Full text link
    The lack of annotated data in many languages is a well-known challenge within the field of multilingual natural language processing (NLP). Therefore, many recent studies focus on zero-shot transfer learning and joint training across languages to overcome data scarcity for low-resource languages. In this work we (i) perform a comprehensive comparison of state-ofthe-art multilingual word and sentence encoders on the tasks of named entity recognition (NER) and part of speech (POS) tagging; and (ii) propose a new method for creating multilingual contextualized word embeddings, compare it to multiple baselines and show that it performs at or above state-of-theart level in zero-shot transfer settings. Finally, we show that our method allows for better knowledge sharing across languages in a joint training setting.Comment: 7 pages, 6 figure

    Adaptivity and Modularity for Efficient Generalization Over Task Complexity

    Full text link
    Can transformers generalize efficiently on problems that require dealing with examples with different levels of difficulty? We introduce a new task tailored to assess generalization over different complexities and present results that indicate that standard transformers face challenges in solving these tasks. These tasks are variations of pointer value retrieval previously introduced by Zhang et al. (2021). We investigate how the use of a mechanism for adaptive and modular computation in transformers facilitates the learning of tasks that demand generalization over the number of sequential computation steps (i.e., the depth of the computation graph). Based on our observations, we propose a transformer-based architecture called Hyper-UT, which combines dynamic function generation from hyper networks with adaptive depth from Universal Transformers. This model demonstrates higher accuracy and a fairer allocation of computational resources when generalizing to higher numbers of computation steps. We conclude that mechanisms for adaptive depth and modularity complement each other in improving efficient generalization concerning example complexity. Additionally, to emphasize the broad applicability of our findings, we illustrate that in a standard image recognition task, Hyper- UT's performance matches that of a ViT model but with considerably reduced computational demands (achieving over 70\% average savings by effectively using fewer layers)

    Robust Evaluation of Language–Brain Encoding Experiments

    No full text
    Language–brain encoding experiments evaluate the ability of language models to predict brain responses elicited by language stimuli. The evaluation scenarios for this task have not yet been standardized which makes it difficult to compare and interpret results. We perform a series of evaluation experiments with a consistent encoding setup and compute the results for multiple fMRI datasets. In addition, we test the sensitivity of the evaluation measures to randomized data and analyze the effect of voxel selection methods. Our experimental framework is publicly available to make modelling decisions more transparent and support reproducibility for future comparisons.</p
    corecore