615 research outputs found
Distribution, movements, and habitat use of small striped bass (Morone saxatilis) across multiple spatial scales
Distribution, movements, and habitat use of small (<46 cm,
juveniles and individuals of unknown maturity) striped bass (Morone saxatilis) were investigated with multiple
techniques and at multiple spatial scales (surveys and tag-recapture in the estuary and ocean, and telemetry in the estuary) over multiple years to determine the frequency and duration of use of non-natal estuaries. These unique comparisons suggest, at least in New Jersey, that smaller
individuals (<20 cm) may disperse from natal estuaries and arrive in non-natal estuaries early in life and take up residence for several years. During this period of estuarine residence, individuals spend all seasons primarily in the low salinity portions of the estuary. At larger sizes, they then leave these non-natal estuaries
to begin coastal migrations with those individuals from nurseries in natal estuaries. These composite observations
of frequency and duration of habitat use indicate that non-natal estuaries may provide important habitat for a portion of the striped bass population
Seasonal distribution, abundance, and growth of young-of-the-year Atlantic croaker (Micropogonias undulatus) in Delaware Bay and adjacent marshes
We examined the spatial and temporal distribution, abundance, and growth of young-of-the-year (YOY) Atlantic croaker (Micropogonias undulatus) in Delaware Bay, one of the northernmost estuaries in which they consistently occur along the east coast of the United States. Sampling in Delaware Bay and in tidal creeks in salt marshes adjacent to the bay with otter trawls, plankton nets and weirs, between April and November 1996–99, collected approximately 85,000 YOY. Ingress of each year class into the bay and tidal creeks consistently occurred in the fall, and the first few YOY appeared in August. Larvae as small as 2–3 mm TL were collected in September and October 1996. Epibenthic individuals <25 mm TL were present each fall and again during spring of each year, but not in 1996 when low water temperatures in January and February apparently caused widespread mortality, resulting in their absence the following spring and summer. In 1998 and 1999, a second size class of smaller YOY entered the bay and tidal creeks in June. When YOY survived the winter, there was no evidence of growth until after April. Then the YOY grew rapidly through the summer in all habitats (0.8–1.4 mm/d from May through August). In the bay, they were most abundant from June to August over mud sediments in oligohaline waters. They were present in both subtidal and intertidal creeks in the marshes where they were most abundant from April to June in the mesohaline portion of the lower bay. The larger YOY began egressing out of the marshes in late summer, and the entire year class left the tidal creeks at lengths of 100–200 mm TL by October or November when the next year class was ingressing. These patterns of seasonal distribution and abundance in Delaware Bay and the adjacent marshes are similar to those observed in more southern estuaries along the east coast; however, growth is faster—in keeping with that in other northern estuaries
Recruitment of larval Atlantic menhaden (Brevoortia tyrannus) to North Carolina and New Jersey estuaries: evidence for larval transport northward along the east coast of the United States
Age, size, abundance, and birthdate distributions were compared for larval Atlantic menhaden (Brevoortia tyrannus) collected weekly during their estuarine recruitment seasons in 1989–90, 1990–91, and 1992–93 in lower estuaries near Beaufort, North Carolina, and Tuckerton, New Jersey, to determine the source of these larvae. Larval recruitment in New Jersey extended for 9 months beginning in October but was discontinuous and was punctuated by periods of no catch that were associated with low water temperatures. In North Carolina, recruitment was continuous for 5–6 months beginning in November. Total yearly larval density in North Carolina was higher (15–39×) than in New Jersey for each of the 3 years. Larvae collected in North Carolina generally grew faster than larvae collected in New Jersey and were, on average, older and larger. Birthdate distributions (back-calculated from sagittal otolith ages) overlapped between sites and included many larvae that were spawned in winter. Early spawned (through October) larvae caught in the New Jersey estuary were probably spawned off New Jersey. Larvae spawned later (November–April) and collected in the same estuary were probably from south of Cape Hatteras because only there are winter water temperatures warm enough (≥16°C) to allow spawning and larval development. The percentage contribution of these late-spawned larvae from south of Cape Hatteras were an important, but variable fraction (10% in 1992–93 to 87% in 1989–90) of the total number of larvae recruited to this New Jersey estuary. Thus, this study provides evidence that some B. tyrannus spawned south of Cape Hatteras may reach New Jersey estuarine nurseries
Movements and growth of tagged young-of-the-year Atlantic croaker (Micropogonias undulatus L.) in restored and reference marsh creeks in Delaware Bay, USA
Abstract The residence time, movements, and growth of tagged young-of-the-year Atlantic croaker, Micropogonias undulatus L., were studied from July to October 1998 as measures of the success of a marsh restoration project adjacent to Delaware Bay. A total of 8173 croaker (41 -121 mm SL) were tagged from each of two creeks in both marshes during July and August with internal sequential coded wire microtags. A prior tag-retention study in the laboratory found a 95% tag retention rate. Of those tagged, 3.6% were recaptured within and nearby the study creeks using seines, otter trawls, and weirs during a 105-day period. Recapture percentages ranged from 1.5% to 6.1% in individual creeks in the restored marsh. There was some movement of tagged fish between creeks in the restored marsh and out into the main creek, but 95% of the recaptures were made in the subtidal and intertidal portions of the same creek in which they were tagged. Fewer fish were recaptured at the reference marsh (1.6% recapture; n = 1489 tagged) up to 50 days after tagging, with no evidence of movement between creeks. The average individual growth rates for recaptured croaker was the same in both restored (0.69 mm/day) and reference (0.63 mm/day) marshes before egress from the creeks in September and October. As a result, both created creeks in a restored marsh and natural creeks in a reference marsh appeared to be utilized as young-of-the-year habitat in a similar way during the summer and until egress out the marshes during the fall, thus this restoration effort has been successful in creating suitable habitat for Atlantic croaker.
STAT5-Interacting proteins: A synopsis of proteins that regulate STAT5 activity
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. Signal Transducers and Activators of Transcription (STATs) are key components of the JAK/STAT pathway. Of the seven STATs, STAT5A and STAT5B are of particular interest for their critical roles in cellular differentiation, adipogenesis, oncogenesis, and immune function. The interactions of STAT5A and STAT5B with cytokine/hormone receptors, nuclear receptors, transcriptional regulators, proto-oncogenes, kinases, and phosphatases all contribute to modulating STAT5 activity. Among these STAT5 interacting proteins, some serve as coactivators or corepressors to regulate STAT5 transcriptional activity and some proteins can interact with STAT5 to enhance or repress STAT5 signaling. In addition, a few STAT5 interacting proteins have been identified as positive regulators of STAT5 that alter serine and tyrosine phosphorylation of STAT5 while other proteins have been identified as negative regulators of STAT5 via dephosphorylation. This review article will discuss how STAT5 activity is modulated by proteins that physically interact with STAT5
Loss of DBC1 (CCAR2) affects TNFα-induced lipolysis and Glut4 gene expression in murine adipocytes
© 2018 Society for Endocrinology Published by Bioscientifica Ltd. STAT5A (signal transducer and activator of transcription 5A) is a transcription factor that plays a role in adipocyte development and function. In this study, we report DBC1 (deleted in breast cancer 1 - also known as CCAR2) as a novel STAT5A-interacting protein. DBC1 has been primarily studied in tumor cells, but there is evidence that loss of this protein may promote metabolic health in mice. Currently, the functions of DBC1 in mature adipocytes are largely unknown. Using immunoprecipitation and immunoblotting techniques, we confirmed that there is an association between endogenous STAT5A and DBC1 proteins under physiological conditions in the adipocyte nucleus that is not dependent upon STAT5A tyrosine phosphorylation. We used siRNA to knockdown DBC1 in 3T3-L1 adipocytes to determine the impact on STAT5A activity, adipocyte gene expression and TNFα (tumor necrosis factor α)-regulated lipolysis. The loss of DBC1 did not affect the expression of several STAT5A target genes including Socs3, Cish, Bcl6, Socs2 and Igf1. However, we did observe decreased levels of TNFα-induced glycerol and free fatty acids released from adipocytes with reduced DBC1 expression. In addition, DBC1-knockdown adipocytes had increased Glut4 expression. In summary, DBC1 can associate with STAT5A in adipocyte nucleus, but it does not appear to impact regulation of STAT5A target genes. Loss of adipocyte DBC1 modestly increases Glut4 gene expression and reduces TNFα-induced lipolysis. These observations are consistent with in vivo observations that show loss of DBC1 promotes metabolic health in mice
Initial investigation using statistical process control for quality control of accelerator beam steering
<p>Abstract</p> <p>Background</p> <p>This study seeks to increase clinical operational efficiency and accelerator beam consistency by retrospectively investigating the application of statistical process control (SPC) to linear accelerator beam steering parameters to determine the utility of such a methodology in detecting changes prior to equipment failure (interlocks actuated).</p> <p>Methods</p> <p>Steering coil currents (SCC) for the transverse and radial planes are set such that a reproducibly useful photon or electron beam is available. SCC are sampled and stored in the control console computer each day during the morning warm-up. The transverse and radial - positioning and angle SCC for photon beam energies were evaluated using average and range (Xbar-R) process control charts (PCC). The weekly average and range values (subgroup n = 5) for each steering coil were used to develop the PCC. SCC from September 2009 (annual calibration) until two weeks following a beam steering failure in June 2010 were evaluated. PCC limits were calculated using the first twenty subgroups. Appropriate action limits were developed using conventional SPC guidelines.</p> <p>Results</p> <p>PCC high-alarm action limit was set at 6 standard deviations from the mean. A value exceeding this limit would require beam scanning and evaluation by the physicist and engineer. Two low alarms were used to indicate negative trends. Alarms received following establishment of limits (week 20) are indicative of a non-random cause for deviation (Xbar chart) and/or an uncontrolled process (R chart). Transverse angle SCC for 6 MV and 15 MV indicated a high-alarm 90 and 108 days prior to equipment failure respectively. A downward trend in this parameter continued, with high-alarm, until failure. Transverse position and radial angle SCC for 6 and 15 MV indicated low-alarms starting as early as 124 and 116 days prior to failure, respectively.</p> <p>Conclusion</p> <p>Radiotherapy clinical efficiency and accelerator beam consistency may be improved by instituting SPC methods to monitor the beam steering process and detect abnormal changes prior to equipment failure.</p> <p><b>PACS numbers: </b>87.55n, 87.55qr, 87.56bd</p
Inter and intra-estuary variability in ingress, condition and settlement of the American eel, Anguilla rostrata: implications for estimating and understanding recruitment
The objective of this study was to quantify spatial and temporal variability of anguillid glass eel ingress within and between adjacent watersheds in order to help illuminate the mechanisms moderating annual recruitment. Because single fixed locations are often used to assess annual recruitment, the intra-annual dynamics of ingress across multiple sites often remains unresolved. To address this question, plankton nets and eel collectors were deployed weekly to synoptically quantify early stage Anguilla rostrata abundance at 12 sites across two New Jersey estuaries over an ingress season. Numbers of early-stage glass eels collected at the inlet mouths were moderately variable within and between estuaries over time and showed evidence for weak lunar phase and water temperature correlations. The relative condition of glass eels, although highly variable, declined significantly over the ingress season and indicated a tendency for lower condition A. rostrata to colonize sites in the lower estuary. Accumulations of glass eels and early-stage elvers retrieved from collectors (one to >1500 A. rostrata per collector) at lower estuary sites were highly variable over time, producing only weak correlations between estuaries. By way of contrast, development into late-stage elvers, coupled with the large-scale colonization of up-river sites, was highly synchronized between and within estuaries and contingent on water temperatures reaching c. 10-12 • C. Averaged over the ingress season, abundance estimates were remarkably consistent between paired sites across estuaries, indicating a low degree of interestuary variability. Within an estuary, however, abundance estimates varied considerably depending on location. These results and methodology have important implications for the planning and interpretation of early-stage anguillid eel surveys as well as the understanding of the dynamic nature of ingress and the spatial scales over which recruitment varies
- …