11 research outputs found

    African <em>Moringa stenopetala</em> Plant: An Emerging Source of Novel Ingredients for Plant-Based Foods

    Get PDF
    Moringa stenopetala is a multi-purpose tropical plant native to East Africa. The plant is exceptionally rich in nutrients and health-promoting bioactive compounds. It is among the top plants that could potentially feed the world and alleviate nutritional deficiencies. Moringa stenopetala is a versatile plant because its various parts, including leaves, seeds, flowers, pods, bark, and roots are useful to humans. Especially, the leaves and seeds are high in protein with all the essential amino acids. Based on the FAO database, M. stenopetala seed protein with its essential amino acid content stands highest among all commercial plant protein sources. Though it is a high-value plant and extensively used for food and traditional medicine by the local people in its native place, it is underutilized elsewhere. This chapter reviews recent research efforts that aim to unlock the potential of the plant as a source of ingredients for food, cosmetic and nutraceutical industries

    Trends of Hydroclimate Variables in the Upper Huai River Basin: Implications of Managing Water Resource for Climate Change Mitigation

    Get PDF
    The present study attempted to investigate the trends of mean annual temperature, precipitation, and streamflow changes to determine their relationships in the upper Huai river basin. The Mann–Kendall (MK), Sen's slope test estimator, and innovative trend detection (ф) (ITA) methods were used to detect the trends. According to the findings, average annual precipitation shows a descending trend (ф = −0.17) in most stations. An increasing trend was found only in Fuyang station (ф = 1.02). In all stations, the trends of mean annual temperature (ф = 0.36) were abruptly increased. During the past 57 years, the mean air temperature has considerably increased by 12°C/10a. The river streamflow showed a dramatic declining trend in all stations for the duration of the study period (1960–2016) (ф = −4.29). The climate variability in the study region affects the quantity of the streamflow. The river streamflow exhibits decreasing trends from 1965 onwards. The main possible reason for the declining stream flow in the study area is the declining amount of precipitation on some specific months due to the occurrence of climate change. The outcomes of this study could create awareness for the policymakers and members of the scientific community, informing them about the hydroclimatic evolutions across the study basin, and become an inordinate resource for advanced scientific research

    Wastewater treatment potential of Moringa stenopetala over Moringa olifera as a natural coagulant, antimicrobial agent and heavy metal removals

    No full text
    Moringa is a multipurpose tree with considerable economic and social potential and its cultivation is currently being actively promoted in many developing countries. Seeds of this tropical tree contain water-soluble, positively charged proteins that act as an effective coagulant for water and wastewater treatment. This study evaluated the effectiveness of Moringa oleifera and Moringa stenopetala seed powder in water purification as a replacement coagulant. Water treatment with M. stenopetala was found to be more effective for water purification than treatment with M. oleifera seed. Indeed, it has been given little research and development attention. Unlike M. oleifera, little scientific research has been conducted on the properties and potential uses of M. stenopetala in general and its seeds in particular. However, the method should be encouraged in communities without safe water supply

    Innovative Trend Analysis of Annual and Seasonal Rainfall Variability in Amhara Regional State, Ethiopia

    No full text
    This study investigated the annual and seasonal rainfall variability at five selected stations of Amhara Regional State, by using the innovative trend analysis method (ITAM), Mann-Kendall (MK) and Sen&rsquo;s slope estimator test. The result showed that the trend of annual rainfall was increasing in Gondar (Z = 1.69), Motta (Z = 0.93), and Bahir Dar (Z = 0.07) stations. However, the trends in Dangla (Z = &minus;0.37) and Adet (Z = &minus;0.32) stations showed a decreasing trend. As far as monthly and seasonal variability of rainfall are concerned, all the stations exhibited sensitivity of change. The trend of rainfall in May, June, July, August, and September was increasing. However, the trend on the rest of other months showed a decreasing trend. The increase in rainfall during Kiremt season, along with the decrease in number of rainy days, leads to an increase of extreme rainfall events over the region during 1980&ndash;2016. The consistency in rainfall trends over the study region confirms the robustness of the change in trends. Innovative trend analysis method is very crucial method for detecting the trends in rainfall time series data due to its potential to present the results in graphical format as well. The findings of this paper could help researchers to understand the annual and seasonal variability of rainfall over the study region and become a foundation for further studies

    Water Resources Allocation Systems under Irrigation Expansion and Climate Change Scenario in Awash River Basin of Ethiopia

    No full text
    Rational allocation of water resources is very essential to cope with water scarcity. The optimal allocation of limited water resources is required for various purposes to achieve sustainable development. The Awash River Basin is currently faced with a scarcity of water due to increasing demands, urbanization, irrigation expansion, and variability of climates. The excessive abstraction of water resources in the basin without proper assessing of the available water resources contributed to water scarcity. This paper aimed to develop a water evaluation and planning (WEAP) model to allocate the water supplies to demanding sectors based on an economic parameter to maximize the economic benefits. The water demands, water shortages, and supply alternatives were analyzed under different scenarios. Three scenarios were developed, namely reference (1981–2016), medium-term development (2017–2030), and long-term development (2031–2050) future scenarios with the baseline period (1980). The results of this study showed that the total quantity of water needed to meet the irrigation demands of all the stations was 306.96 MCM from 1980 to 2016. Seasonally, March, April, May, and June require the maximum irrigation water demand. However, July, August, and September require minimum demand for water because of the rainy season. The seasonal unmet demand is observed in all months, which ranged from 6 × 106 m3 to 35.9 × 106 m3 in August and May respectively. The trend of streamflow in Melka Kuntre was a statistically significant increasing trend after 2008 (Z = 5.33) whereas the trends in other gauge stations showed a relatively decreasing trend. The results also showed that future water consumption would greatly increase in the Awash River Basin. The prevention of future water shortages requires the implementation of water-saving measures and the use of new water supply technologies. The findings of this study will serve as a reference for water resources managers and policy and decision makers

    Observed Trends of Climate and River Discharge in Mongolia’s Selenga Sub-Basin of the Lake Baikal Basin

    No full text
    Mongolia&rsquo;s Selenga sub-basin of the Lake Baikal basin is spatially extensive, with pronounced environmental gradients driven primarily by precipitation and air temperature on broad scales. Therefore, it is an ideal region to examine the dynamics of the climate and the hydrological system. This study investigated the annual precipitation, air temperature, and river discharge variability at five selected stations of the sub-basin by using Mann-Kendall (MK), Innovative trend analysis method (ITAM), and Sen&rsquo;s slope estimator test. The result showed that the trend of annual precipitation was slightly increasing in Ulaanbaatar (Z = 0.71), Erdenet (Z = 0.13), and Tsetserleg (Z = 0.26) stations. Whereas Murun (Z = 2.45) and Sukhbaatar (Z = 1.06) stations showed a significant increasing trend. And also, the trend of annual air temperature in Ulaanbaatar (Z = 5.88), Erdenet (Z = 3.87), Tsetserleg (Z = 4.38), Murun (Z = 4.77), and Sukhbaatar (Z = 2.85) was sharply increased. The average air temperature has significantly increased by 1.4 &deg;C in the past 38 years. This is very high in the semi-arid zone of central Asia. The river discharge showed a significantly decreasing trend during the study period years. It has been apparent since 1995. The findings of this paper could help researchers to understand the annual variability of precipitation, air temperature, and river discharge over the study region and, therefore, become a foundation for further studies

    Trends of Hydroclimate Variables in the Upper Huai River Basin: Implications of Managing Water Resource for Climate Change Mitigation

    No full text
    The present study attempted to investigate the trends of mean annual temperature, precipitation, and streamflow changes to determine their relationships in the upper Huai river basin. The Mann–Kendall (MK), Sen’s slope test estimator, and innovative trend detection (ф) (ITA) methods were used to detect the trends. According to the findings, average annual precipitation shows a descending trend (ф = −0.17) in most stations. An increasing trend was found only in Fuyang station (ф = 1.02). In all stations, the trends of mean annual temperature (ф = 0.36) were abruptly increased. During the past 57 years, the mean air temperature has considerably increased by 12°C/10a. The river streamflow showed a dramatic declining trend in all stations for the duration of the study period (1960–2016) (ф = −4.29). The climate variability in the study region affects the quantity of the streamflow. The river streamflow exhibits decreasing trends from 1965 onwards. The main possible reason for the declining stream flow in the study area is the declining amount of precipitation on some specific months due to the occurrence of climate change. The outcomes of this study could create awareness for the policymakers and members of the scientific community, informing them about the hydroclimatic evolutions across the study basin, and become an inordinate resource for advanced scientific research
    corecore