4 research outputs found

    Equal Channel Angular Extrusion Characteristics on Mechanical Behavior of Aluminum Alloy

    Get PDF
    Materials strengthened by conventional methods such as strain hardening, solute additions, precipitation and grain size refinement are often adopted in industrial processes. But there is limitation to the amount of deformation that these conventional methods can impact to a material. This study focused on the review of major mechanical properties of aluminum alloys in the presence of an ultrafine grain size into polycrystalline materials by subjecting the metal to an intense plastic straining through simple shear without any corresponding change in the cross-sectional dimensions of the sample. The effect of the heavy strain rate on the microstructure of aluminum alloys was in refinement of the coarse grains into ultrafine grain size by introducing a high density of dislocations and subsequently re-arranging the dislocations to form an array of grain boundaries. Hence, this investigation is aimed at gathering contributions on the influence of equal channel angular extrusion toward improving the mechanical properties of the aluminum alloys through intense plastic strain

    Equal Channel Angular Extrusion Characteristics on Mechanical Behavior of Aluminum Alloy

    Get PDF
    Materials strengthened by conventional methods such as strain hardening, solute additions, precipitation and grain size refinement are often adopted in industrial processes. But there is limitation to the amount of deformation that these conventional methods can impact to a material. This study focused on the review of major mechanical properties of aluminum alloys in the presence of an ultrafine grain size into polycrystalline materials by subjecting the metal to an intense plastic straining through simple shear without any corresponding change in the cross-sectional dimensions of the sample. The effect of the heavy strain rate on the microstructure of aluminum alloys was in refinement of the coarse grains into ultrafine grain size by introducing a high density of dislocations and subsequently re-arranging the dislocations to form an array of grain boundaries. Hence, this investigation is aimed at gathering contributions on the influence of equal channel angular extrusion toward improving the mechanical properties of the aluminum alloys through intense plastic strain

    Investigation of Biodegradation Speed and Biodegradability of Polyethylene and Manihot Esculenta Starch Blends

    No full text
    Over 350 million tons per year of conventional plastics is produced from petroleum currently and this amount is expected to rise exponentially in the near future. Proper disposal of these products has caused a great problem for the waste management industry and as a result, there is a significant negative impact on the environment. As a matter of fact, in order to reduce the environmental impact of plastics, some products obtained from agriculture (like starch) are used as polymer blend with synthetic plastics. This study shows that Manihot esculenta can be blended with polyethylene to form a partially degradable polymer. The processing conditions and sample formulations are shown to significantly affect the structure of the polymer which has a concomitant effect upon the degradation ratio as well as the degradation rate. Six samples in all were produced by varying composition of the blend between Low-density Polyethylene and Manihot esculenta using glycerol and water as plasticiser. These samples were buried in soil and the degradation ratios and rates were studied within a period of 28 days. Results showed that these produced biopolymers are environmentally compatible and bio-degradable. The rate of biodegradation in soil of these biopolymer samples varied largely. The polymer blend with 80% LDPE (20 CaS) by weight had the most regular weight loss over the period of the study. Under the conditions the study was carried out, polymer blend 20 CaS also had the steadiest rate of degradation. Hence 80% LDPE (wt.%) blended with Manihot esculenta starch is the optimal ratio with regard to the degradability of biopolymer in sandy-loam soil
    corecore