175 research outputs found

    Relationships of Risk Factors for Pre-Eclampsia with Patterns of Occurrence of Isolated Gestational Proteinuria during Normal Term Pregnancy

    Get PDF
    <p><b>Background:</b> Isolated gestational proteinuria may be part of the pre-eclampsia disease spectrum. Confirmation of its association with established pre-eclampsia risk factors and higher blood pressure in uncomplicated pregnancies would support this concept.</p> <p><b>Methods:</b> Data from 11,651 women from the Avon Longitudinal Study of Parents and Children who had a term live birth but did not have pre-existing hypertension or diabetes or develop gestational diabetes or preeclampsia were used. Proteinuria was assessed repeatedly (median 12 measurements per woman) by dipstick and latent class analysis was used to identify subgroups of the population with different patterns of proteinuria in pregnancy.</p> <p><b>Results:</b> Higher maternal pre-pregnancy body mass index (BMI), younger age, nulliparity and twin pregnancy were independently associated with increased odds of any proteinuria in pregnancy. Women who experienced proteinuria showed five patterns: proteinuria in early pregnancy only (<= 20 weeks gestation), and onset at 21-28 weeks, 29-32 weeks, 33-36 weeks and >= 37 weeks gestation. There were higher odds of proteinuria onset after 33 weeks in obese women and after 37 weeks in nulliparous women compared with normal weight and multiparous women respectively. Smoking in pregnancy was weakly negatively associated with odds of proteinuria onset after 37 weeks. Twin pregnancies had higher odds of proteinuria onset from 29 weeks. In women with proteinuria onset after 33 weeks blood pressure was higher in early pregnancy and at the end of pregnancy.</p> <p><b>Conclusions:</b> Established pre-eclampsia risk factors were related to proteinuria occurrence in late gestation in healthy term pregnancies, supporting the hypothesis that isolated gestational proteinuria may represent an early manifestation of preeclampsia.</p&gt

    Educational Experiences and Shifts in Group Consciousness: Studying Women

    Get PDF
    This study takes a multifaceted approach to group consciousness. The authors assessed changes in women’s feminist consciousness due to their exposure to feminism through women’s studies. Feminist consciousness was measured at the beginning and end of a semester during which some research participants were enrolled in an introductory women’s studies course. Women’s studies students were compared with students who were interested, but not enrolled, in women’s studies. As expected, women’s studies students showed an increase on several aspects of feminist consciousness, whereas non-women’s studies students did not. Non-women’s studies students became less sensitive to sexism. It is also noteworthy that, although they became more feminist, women’s studies students did not become more negative toward men.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69064/2/10.1177_0146167299025003010.pd

    Receiver development for BICEP Array, a next-generation CMB polarimeter at the South Pole

    Get PDF
    A detection of curl-type (B-mode) polarization of the primary CMB would be direct evidence for the inflationary paradigm of the origin of the Universe. The Bicep/Keck Array (BK) program targets the degree angular scales, where the power from primordial B-mode polarization is expected to peak, with ever-increasing sensitivity and has published the most stringent constraints on inflation to date. Bicep Array (BA) is the Stage-3 instrument of the BK program and will comprise four Bicep3-class receivers observing at 30/40, 95, 150 and 220/270 GHz with a combined 32,000+ detectors; such wide frequency coverage is necessary for control of the Galactic foregrounds, which also produce degree-scale B-mode signal. The 30/40 GHz receiver is designed to constrain the synchrotron foreground and has begun observing at the South Pole in early 2020. By the end of a 3-year observing campaign, the full Bicep Array instrument is projected to reach σr between 0.002 and 0.004, depending on foreground complexity and degree of removal of B-modes due to gravitational lensing (delensing). This paper presents an overview of the design, measured on-sky performance and calibration of the first BA receiver. We also give a preview of the added complexity in the time-domain multiplexed readout of the 7,776-detector 150 GHz receiver

    Analysis of Temperature-to-Polarization Leakage in BICEP3 and Keck CMB Data from 2016 to 2018

    Get PDF
    The Bicep/Keck Array experiment is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background polarization from the South Pole in search of a primordial B-mode signature. As a pair differencing experiment, an important systematic that must be controlled is the differential beam response between the co-located, orthogonally polarized detectors. We use high-fidelity, in-situ measurements of the beam response to estimate the temperature-to-polarization (T → P) leakage in our latest data including observations from 2016 through 2018. This includes three years of Bicep3 observing at 95 GHz, and multifrequency data from Keck Array. Here we present band-averaged far-field beam maps, differential beam mismatch, and residual beam power (after filtering out the leading difference modes via deprojection) for these receivers. We show preliminary results of "beam map simulations," which use these beam maps to observe a simulated temperature (no Q/U) sky to estimate T → P leakage in our real data

    Observing low elevation sky and the CMB Cold Spot with BICEP3 at the South Pole

    Get PDF
    BICEP3 is a 520 mm aperture on-axis refracting telescope at the South Pole, which observes the polarization of the cosmic microwave background (CMB) at 95 GHz to search for the B-mode signal from inflationary gravitational waves. In addition to this main target, we have developed a low-elevation observation strategy to extend coverage of the Southern sky at the South Pole, where BICEP3 can quickly achieve degree-scale E-mode measurements over a large area. An interesting E-mode measurement is probing a potential polarization anomaly around the CMB Cold Spot. During the austral summer seasons of 2018-19 and 2019-20, BICEP3 observed the sky with a flat mirror to redirect the beams to various low elevation ranges. The preliminary data analysis shows degree-scale E-modes measured with high signal-to-noise ratio

    Observing low elevation sky and the CMB Cold Spot with BICEP3 at the South Pole

    Get PDF
    BICEP3 is a 520 mm aperture on-axis refracting telescope at the South Pole, which observes the polarization of the cosmic microwave background (CMB) at 95 GHz to search for the B-mode signal from inflationary gravitational waves. In addition to this main target, we have developed a low-elevation observation strategy to extend coverage of the Southern sky at the South Pole, where BICEP3 can quickly achieve degree-scale E-mode measurements over a large area. An interesting E-mode measurement is probing a potential polarization anomaly around the CMB Cold Spot. During the austral summer seasons of 2018-19 and 2019-20, BICEP3 observed the sky with a flat mirror to redirect the beams to various low elevation ranges. The preliminary data analysis shows degree-scale E-modes measured with high signal-to-noise ratio

    Polarization calibration of the BICEP3 CMB polarimeter at the South Pole

    Get PDF
    The BICEP3 CMB Polarimeter is a small-aperture refracting telescope located at the South Pole and is specifically designed to search for the possible signature of inflationary gravitational waves in the Cosmic Microwave Background (CMB). The experiment measures polarization on the sky by differencing the signal of co-located, orthogonally polarized antennas coupled to Transition Edge Sensor (TES) detectors. We present precise measurements of the absolute polarization response angles and polarization efficiencies for nearly all of BICEP3's ~800 functioning polarization-sensitive detector pairs from calibration data taken in January 2018. Using a Rotating Polarized Source (RPS), we mapped polarization response for each detector over a full 360 degrees of source rotation and at multiple telescope boresight rotations from which per-pair polarization properties were estimated. In future work, these results will be used to constrain signals predicted by exotic physical models such as Cosmic Birefringence
    • …
    corecore