32 research outputs found

    Riverbed Sediments as Reservoirs of Multiple Vibrio cholerae

    Get PDF
    Africa remains the most cholera stricken continent in the world as many people lacking access to safe drinking water rely mostly on polluted rivers as their main water sources. However, studies in these countries investigating the presence of Vibrio cholerae in aquatic environments have paid little attention to bed sediments. Also, information on the presence of virulence-associated genes (VAGs) in environmental ctx-negative V. cholerae strains in this region is lacking. Thus, we investigated the presence of V. cholerae VAGs in water and riverbed sediment of the Apies River, South Africa. Altogether, 120 samples (60 water and 60 sediment samples) collected from ten sites on the river (January and February 2014) were analysed using PCR. Of the 120 samples, 37 sediment and 31 water samples were positive for at least one of the genes investigated. The haemolysin gene (hlyA) was the most isolated gene. The cholera toxin (ctxAB) and non-O1 heat-stable (stn/sto) genes were not detected. Genes were frequently detected at sites influenced by human activities. Thus, identification of V. cholerae VAGs in sediments suggests the possible presence of V. cholerae and identifies sediments of the Apies River as a reservoir for potentially pathogenic V. cholerae with possible public health implications

    Insects, Rodents, and Pets as Reservoirs, Vectors, and Sentinels of Antimicrobial Resistance

    Get PDF
    This paper reviews the occurrence of antimicrobial resistance (AMR) in insects, rodents, and pets. Insects (e.g., houseflies, cockroaches), rodents (rats, mice), and pets (dogs, cats) act as reservoirs of AMR for first-line and last-resort antimicrobial agents. AMR proliferates in insects, rodents, and pets, and their skin and gut systems. Subsequently, insects, rodents, and pets act as vectors that disseminate AMR to humans via direct contact, human food contamination, and horizontal gene transfer. Thus, insects, rodents, and pets might act as sentinels or bioindicators of AMR. Human health risks are discussed, including those unique to low-income countries. Current evidence on human health risks is largely inferential and based on qualitative data, but comprehensive statistics based on quantitative microbial risk assessment (QMRA) are still lacking. Hence, tracing human health risks of AMR to insects, rodents, and pets, remains a challenge. To safeguard human health, mitigation measures are proposed, based on the one-health approach. Future research should include human health risk analysis using QMRA, and the application of in-silico techniques, genomics, network analysis, and ’big data’ analytical tools to understand the role of household insects, rodents, and pets in the persistence, circulation, and health risks of AMR

    The impact of various land uses on the microbial and physicochemical quality of surface water bodies in developing countries : prioritisation of water resources management areas

    Get PDF
    To protect water resources, the WHO recommends assessing land use influence on water quality, taking into consideration residential development and waste disposal amongst others. Thus, we investigated the impact of unconstructed plots, an informal settlement, an urban residential area, and an industrial area on the microbiological and physicochemical quality of two main tributaries within the Klein Jukskei catchment, Johannesburg, South Africa, to identify areas where immediate resource management strategies were needed. Water samples collected from the tributaries’ sources and upstream and downstream from each land use type (Winter and Spring) were analysed for E. coli (indicator organism), using the Colilert® 18 system. Physicochemical parameters (Temperature, pH, dissolved oxygen, electrical conductivity, turbidity and total dissolved solids) were measured using multiparameter instruments. The tributaries’ sources had the lowest E. coli counts (Sandspruit – 0.74; North Ridingspruit – 1.18 log10 MPN/100 mL) during the study. After flowing through the various land uses, mean E. coli counts reached 5.98 (Sandspruit) and 4.85 log10 MPN/100 mL (North Ridingspruit). E. coli values and all physicochemical parameters (but for pH) downstream from most of the land uses did not meet the South African drinking water quality guidelines. The informal settlement had the most negative impact on the microbial and physicochemical quality of the water within the tributaries. Thus, providing informal settlements with appropriate sanitation facilities is likely to prevent pollution of the water bodies. Protection of the sources should also be implemented while industrial wastes need to be monitored for conformity with water quality guidelines before discharge.The authors personally provided all funding for the current research.http://www.elsevier.com/locate/enmm2018-12-30hj2017Geography, Geoinformatics and Meteorolog

    Not All Street Food Is Bad: Low Prevalence of Antibiotic-Resistant Salmonella enterica in Ready-to-Eat (RTE) Meats in Ghana Is Associated with Good Vendors’ Knowledge of Meat Safety

    Get PDF
    Foodborne infections due to the consumption of meat is a significant threat to public health. However, good vendor and consumer knowledge of meat safety could prevent meat contamination with and transmission of foodborne pathogens like Salmonella. Thus, this study investigated the vendor and consumer perception, knowledge, and practices of meat safety regarding ready-to-eat (RTE) meat and how this affected the prevalence and antibiotic susceptibility of Salmonella enterica in RTE meats in the streets of Ghana. A semi-structured questionnaire was used to obtain the demographics, knowledge, and practices of meat safety data from RTE meat vendors (n = 300) and consumers (n = 382). Salmonella enterica detection was done according to the United State of America (USA)-Food and Drugs Administration (FDA) Bacteriological Analytical Manual. The disk diffusion method was used for antibiotic resistance testing. The results revealed that most of the respondents had heard of meat safety (98.3% vendors, 91.8% consumers) and knew that meat could be contaminated by poor handling (100.0% vendors, 88.9% consumers). The respondents knew that regular hand washing reduced the risk of meat contamination (100.0% vendors, 94.0% consumers). Responses to the practices of meat safety by vendors were generally better. A very low Salmonella enterica prevalence was observed in the samples, ranging between 0.0 and 4.0% for guinea fowl and beef, respectively. However, the six isolates obtained were resistant to five of the nine antibiotics tested, with all isolates displaying different resistance profiles. Overall, the good knowledge and practice of meat safety demonstrated by the respondents corroborated the negligible prevalence of Salmonella in this study, reiterating the importance of vendor meat safety knowledge. However, the presence of resistant Salmonella enterica in some of the meat samples, albeit in a very low prevalence, warrants stricter sanitary measures and greater meat safety awareness in the general population to prevent meat-borne infections and potential transmission of drug-resistant bacteria to humans

    Genetic characterization of Salmonella and Shigella spp. isolates recovered from water and riverbed sediment of the Apies River, South Africa

    Get PDF
    Riverbed sediment is a vital component of river ecosystems and plays an important role in many geomorphological and ecological processes. However, when re-suspension occurs, pathogenic bacteria associated with sediment particles may be released into the water column, thus creating a health risk to those who use such water for drinking, household and recreational purposes. The aim of this study was to investigate the presence of bacterial pathogens Salmonella spp. and Shigella spp. in the Apies River and to ascertain whether there was any level of genetic relatedness between river water and riverbed sediment isolates of these pathogenic bacteria. A total of 124 water and sediment samples were collected from a site located on the Apies Rivers upstream of the Daspoort Wastewater Treatment Works, Pretoria, Gauteng, South Africa, between August and November 2014. In order to detect and identify the target bacteria, samples were analysed by culture-dependent and culture-independent techniques (quantitative real-time PCR). Genetic relatedness was established using Sanger sequencing of the invA gene of Salmonella spp. and ipaH of Shigella spp. Results of this study displayed the presence of the target bacteria both in the water and sediment of the river. The phylogenetic tree of Salmonella spp. revealed a ≥ 99% and 99% genetic relatedness between river water and riverbed sediment isolates for Salmonella spp. and Shigella spp., respectively. The degree of genetic relatedness between sediment and water pathogen isolates suggests that these organisms could possibly have a common origin and that there could be possible movement of microorganisms between the water column and the sediments.Keywords: Salmonella spp., Shigella spp., river water, riverbed sediment, genetic relatednes

    Unveiling the Potency and Harnessing the Antibacterial Activities of Plant Oils against Foodborne Pathogens

    No full text
    The rising concerns regarding antibiotic resistance and the harmful effects of synthetic preservatives have led to an increasing interest in exploring natural alternatives. Plant oils have been traditionally used for their antimicrobial properties, but systematic investigations into their efficacy against foodborne pathogens are necessary for potential applications in food preservation. This study aimed to evaluate the antibacterial potential of various plant oils (neem, coconut, castor, and olive oil) against common foodborne pathogens and analyze their chemical composition using gas chromatography–mass spectrometry (GC-MS). The oils were tested against foodborne pathogens using the disk diffusion method. Minimum inhibitory concentrations (MICs) were determined to assess the potency of the oils. GC-MS was employed to identify the compounds present in each oil. Neem oil exhibited significant antibacterial activity against all tested pathogens, with pronounced effects against Staphylococcus aureus and Bacillus cereus. Coconut oil showed notable activity against Listeria monocytogenes. Castor oil displayed moderate activity, while olive oil exhibited minimal antibacterial effects. The GC-MS analysis revealed a diverse array of compounds in neem oil, which is likely to contribute to its potent antibacterial properties. Neem and coconut oils, owing to their rich bioactive components, emerged as promising candidates for the development of natural antimicrobial agents. These brief findings support the potential application of plant oils in food preservation and emphasize the need for further research into understanding the underlying mechanisms and optimizing their use

    Morphological Characterization and Determination of Aflatoxin-Production Potentials of Aspergillus flavus Isolated from Maize and Soil in Kenya

    No full text
    This study aimed at morphologically identifying Aspergillus flavus in soil and maize and at determining their aflatoxin-producing potentials. Five hundred and fourteen isolates obtained from maize and soil in Kenya were cultivated on Czapeck Dox Agar, Malt Extract Agar, Sabouraud Dextrose Agar, Potato Dextrose Agar, and Rose-Bengal Chloramphenicol Agar. Isolates were identified using macro-morphological characteristics. Micromorphological characteristics were determined using slide cultures. Aflatoxin production was determined by direct visual determination of the UV fluorescence of colonies on Coconut Agar Medium, Yeast Extract Sucrose agar, and Yeast Extract Cyclodextrin Sodium Deoxycholate agar and by Thin Layer Chromatography. Forty-three presumptive A. flavus isolates were identified; aflatoxin was detected in 23% of the isolates by UV fluorescence screening and in 30% by Thin-Layer Chromatography (TLC). The aflatoxins produced were: aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), and aflatoxin G1 (AFG1); some isolates produced only AFB1, whereas others produced either AFB1 and AFB2 or AFB1 and AFG1. The highest incidence of A. flavus (63%) and aflatoxin production (28%) was recorded in samples from Makueni District. Isolates from Uasin Gishu (21%) and Nyeri (5%) were non-aflatoxigenic. Bungoma District recorded 11% positive isolates of which 2% were aflatoxin producers. The occurrence of aflatoxin-producing A. flavus emphasises the need for measures to eliminate their presence in food crops

    Microbial life beyond the grave: 16S rRNA gene-based metagenomic analysis of bacteria diversity and their functional profiles in cemetery environments

    No full text
    Recent studies have identified cemeteries as potential environmental reservoirs of multi-drug resistant pathogenic bacteria that could contaminate groundwater sources posing public health threats. However, these findings were based on the identification of culturable bacteria and at times not below burial grounds. Investigation on the bacterial diversity and functional profiles of bacterial communities above and below burial grounds in human cemeteries are few. The current study used high-throughput sequencing techniques to determine the bacterial composition and their associated functional profiles in cemetery soil samples collected at the surface and below burial ground in two South African cemeteries (Maitland Cemetery in Cape Town and Fontein Street Cemetery in Middelburg) to evaluate the potential health threat to surrounding populations through contamination of groundwater. Significant differences were observed between sample depths with the clustering of the surface (0 m) and the 2 m samples into separate groups. Pseudomonas and Corynebacterium were the most abundant genera across all samples. Pseudomonas and Rhodococcus were the dominant genera in the 2 m samples while Prauserella and Staphylococcus were dominant in the surface samples. The 2 m samples showed a lower alpha diversity but recorded higher proportions of human diseases functional classes compared to the surface samples. Human disease functional profiles revealed involvement, in infectious (cholera), neurodegenerative (Alzheimer's disease) cardiovascular (hypertrophic cardiomyopathy) immune system (Systemic lupus erythematosus) metabolic (Type I & II diabetes) diseases and cancer. Antibiotic resistance and antibiotics synthesis signatures were also identified. Thus, cemeteries could be potential sources of microbial and antibiotic pollution in groundwater, especially in areas with shallow water tables such as Maitland. Selection of sites for use as cemeteries should, therefore, require a proper understanding of the hydrogeological characteristics of the selected site. However, further studies are required to trace the actual movement of these pollutants into groundwater resources.Table S1. Total OTUs across all cemetery soil samples based on Greengene database.Table S2. Similarities and differences of OTUs between soil samples obtained from different cemeteries.Table S3. Comparison of samples based on Fisher exact test (P value<0.05) at genus level using R companion package.Table S4. Predicted functional classes of the bacterial populations extracted from soils of different cemeteries located in South Africa. The functional classes were explored using Pi-based on the KEGG database (Level 3).Table S5. Predicted functional classes of the bacterial populations extracted from soils of different cemeteries located in South Africa. The functional classes were predicted using Piphillin based on the KEGG database.Table S6. Predicted pathways based on Piphillin results using the KEGG pathway database.The South African Water Research Commission ( www.wrc.org.za ), Grant number K5/2449 ), on the hydrological, geotechnical and health impacts of cemeteries.http://www.elsevier.com/locate/scitotenv2020-03-10hj2018Geolog

    Rethinking Manure Application: Increase in Multidrug-Resistant Enterococcus spp. in Agricultural Soil Following Chicken Litter Application

    No full text
    The current study investigated the impact of chicken litter application on the abundance of multidrug-resistant Enterococcus spp. in agricultural soil. Soil samples were collected from five different strategic places on a sugarcane farm before and after manure application for four months. Chicken litter samples were also collected. Enterococci were enumerated using the Enterolert®/Quanti-Tray 2000® system and confirm and differentiated into species using real-time PCR. The antibiotic susceptibility profile of the isolates was determined using the disk diffusion method following the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. The overall mean bacterial count was significantly higher (p &lt; 0.05) in manure-amended soil (3.87 × 107 MPN/g) than unamended soil (2.89 × 107 MPN/g). Eight hundred and thirty-five enterococci (680 from soil and 155 from litter) were isolated, with E. casseliflavus being the most prevalent species (469; 56.2%) and E. gallinarum being the least (16; 1.2%). Approximately 56% of all the isolates were resistant to at least one antibiotic tested, with the highest resistance observed against tetracycline (33%) and the lowest against chloramphenicol (0.1%); 17% of E. faecium were resistant to quinupristin-dalfopristin. Additionally, 27.9% (130/466) of the isolates were multidrug-resistant, with litter-amended soil harbouring more multidrug-resistant (MDR) isolates (67.7%; 88/130) than unamended soil (10.0%; 13/130). All isolates were susceptible to tigecycline, linezolid and gentamicin. About 7% of the isolates had a multiple antimicrobial resistance index &gt; 0.2, indicative of high antibiotic exposure. Although organic fertilizers are regarded as eco-friendly compared to chemical fertilizers for improving soil fertility, the application of untreated animal manure could promote the accumulation of antibiotics and their residues and antibiotic-resistant bacteria in the soil, creating an environmental reservoir of antimicrobial resistance, with potential human and environmental health risks

    Evolution and Emergence of Antibiotic Resistance in Given Ecosystems: Possible Strategies for Addressing the Challenge of Antibiotic Resistance

    No full text
    Antibiotics were once considered the magic bullet for all human infections. However, their success was short-lived, and today, microorganisms have become resistant to almost all known antimicrobials. The most recent decade of the 20th and the beginning of the 21st century have witnessed the emergence and spread of antibiotic resistance (ABR) in different pathogenic microorganisms worldwide. Therefore, this narrative review examined the history of antibiotics and the ecological roles of antibiotics, and their resistance. The evolution of bacterial antibiotic resistance in different environments, including aquatic and terrestrial ecosystems, and modern tools used for the identification were addressed. Finally, the review addressed the ecotoxicological impact of antibiotic-resistant bacteria and public health concerns and concluded with possible strategies for addressing the ABR challenge. The information provided in this review will enhance our understanding of ABR and its implications for human, animal, and environmental health. Understanding the environmental dimension will also strengthen the need to prevent pollution as the factors influencing ABR in this setting are more than just antibiotics but involve others like heavy metals and biocides, usually not considered when studying ABR
    corecore